Skip to main content

Spring 2017 Syllabus

This syllabus is subject to change! Note that unreleased project out and due dates are just guesses and will likely change somewhat.

Day Topic Optional Reading Slides Video Assignment Due
W 1/18 Introduction to AI Ch. 1 PPT & PDF Math Self-Diagnostic
P0: Tutorial
(ungraded)
F 1/20 5pm

M 1/23 Agents and Search Ch. 3.1-4 (2e: Ch. 3) PPT & PDF HW1 (section 1) T 1/31 11:59pm
W 1/25 A* Search and Heuristics Ch. 3.5-6 (2e: Ch. 4.1-2) PPT & PDF P1: Search
Contest 1: Search
F 2/3 5pm
Su 2/5 11:59pm

M 1/30 Constraint Satisfaction Problems Ch. 6.1 (2e: Ch. 5.1) PPT & PDF HW2 (section 2) M 2/6 11:59pm
W 2/1 CSPs II Ch. 6.2-5 (2e: Ch. 5.2-4) PPT & PDF    

M 2/6 Game Trees: Minimax Ch. 5.2-5 (2e: Ch. 6.2-5)

PPT & PDF

HW3 (section 3/ exam-prep 1) M 2/13 11:59pm
W 2/8 Game Trees: Expectimax; Utilities Ch. 5.2-5 (2e: Ch. 6.2-5) PPT & PDF

P2: Multi-Agent Search

Contest 2: Multi-Agent Search

F 2/17 5pm
Su 2/19 11:59pm

M 2/13 Markov Decision Processes Ch. 16.1-3 PPT & PDF (section 4 / exam-prep 2)
W 2/15 Markov Decision Processes II Sutton and Barto Ch. 3-4 PPT & PDF

 HW4

 T 2/21 11:59pm

M 2/20 Academic Holiday (No lecture)
W 2/22 Reinforcement Learning Ch. 17.1-3, S&B Ch. 6.1,2,5 PPT & PDF HW5 (section 5 / exam-prep 3) T 3/7 11:59pm

M 2/27 Reinforcement Learning II   PPT & PDF

P3: Reinforcement Learning

F 3/3 9pm

W 3/1 RL/Probability/Bayes Nets Ch. 13.1-5 (2e: Ch. 13.1-6) PPT & PDF (section 6 / exam-prep 4)

M 3/6 RL/Bayes' Nets: Representation Ch. 14.1-2,4

PPT & PDF

RL notes

HW6

P4: Bayes Nets

M 3/13 11:59pm

F 4/7 5:00pm

W 3/8 Bayes' Nets: Independence Ch. 14.3, Jordan 2.1 PPT & PDF (section 7 / exam-prep 5)

M 3/13 Bayes' Nets: Inference Ch. 14.4-5  PPT & PDF
W 3/15 MIDTERM (7-8:30p)

M 3/20 Bayes' Nets: Inference/Sampling Ch. 15.1-3, 6 PPT & PDF HW7 M 4/10 11:59pm
W 3/22 Bayes' Nets: Sampling and Decision Networks Ch. 15.2-5 PPT & PDF

M 3/27 Spring Break          
W 3/29 Spring Break

M 4/3 Decision Networks and Value of Information Ch. 15.2,6 PPT & PDF    HW8 (section 8 / exam-prep 6) T 4/18 11:59pm
W 4/5 Markov Models and HMMs Ch. 15.2,6 PPT & PDF

P5: Ghostbusters

Final Contest

M 4/17 5pm

Su 4/23 11:59pm


M 4/10 HMMs & Particle Filtering Ch. 15.2,6 PPT & PDF
HW9

F 4/28 11:59pm
W 4/12 ML: Naive Bayes Ch. 15.2,6 PPT & PDF

(section 9 / exam-prep 7)


M 4/17 ML: Perceptrons   PPT & PDF

(section 10 / exam-prep 8)

W 4/19 ML: Deep Learning PPT & PDF P6: Classification F 4/28, 5pm

M 4/24 Advanced Topics   PPT & PDF
W 4/26 Advanced Topics / Final Contest   (section 11 / exam-prep 9)

F 5/12 FINAL EXAM (3-6pm)