Skip to main content

Fall 2016 Syllabus

This syllabus is subject to change. Note that unreleased project out and due dates are just guesses and will likely change somewhat.

You must be logged on to your Berkeley account to view the videos on youtube. Otherwise, the video will be shown as "private."

Day Topic Optional Reading Slides Video Assignment Due
Thu 8/25 Introduction to AI

Ch. 1

pdf / pptx lecture1 Math Self-Diagnostic
P0: Tutorial
(ungraded)
W 8/31 5pm

Tu 8/30 Agents and Search

Ch. 3.1-4 (2e: Ch. 3)

Note 1: Search

pdf / pptx lecture2

HW1 

section 0

M 9/5 11:59pm
Th 9/1 A* Search and Heuristics Ch. 3.5-6 (2e: Ch. 4.1-2) pdf / pptx lecture3

P1: Search

Contest 1: Search

F 9/16 5pm

Su 9/18 11:59pm


Tu 9/6 Constraint Satisfaction Problems

Ch. 6.1 (2e: Ch. 5.1)

Note 2: CSPs

pdf / pptx lecture4

HW2 

section 1 / exam prep 1

M 9/12 11:59pm

Th 9/8 CSPs II Ch. 6.2-5 (2e: Ch. 5.2-4) pdf / pptx lecture5    

Tu 9/13 Game Trees: Minimax

Ch. 5.2-5 (2e: Ch. 6.2-5)

Note 3: Games

pdf / pptx lecture6

HW3 

section 2 / exam prep 2

M 9/19 11:59pm

Th 9/15 Game Trees: Expectimax; Utilities Ch. 5.2-5 (2e: Ch. 6.2-5) pdf / pptx lecture7

P2: Multi-Agent Search

Contest 2: Multi-Agent Search

F 9/30 5pm

Sun 10/16 11:59pm


Tu 9/20 Markov Decision Processes

Ch. 16.1-3

Note 4: MDPs

pdf / pptx lecture8

HW4

section 3 / exam-prep 3

M 9/26 11:59pm
Th 9/22 Markov Decision Processes II Sutton and Barto Ch. 3-4 pdf / pptx lecture9    

Tu 9/27 Reinforcement Learning

Ch. 17.1-3, S&B Ch. 6.1,2,5

Note 5: RL

pdf / pptx lecture10

HW5

section 4 / exam-prep 4

M 10/3 11:59pm
Th 9/29 Reinforcement Learning II   pdf / pptx lecture11

P3: Reinforcement Learning

F 10/14 5pm

Tu 10/4 Probability Ch. 13.1-5 (2e: Ch. 13.1-6) pdf pptx lecture12

HW6

section 5 / exam-prep 5

M 10/17 11:59pm
Th 10/6 MIDTERM (7-9p)

Tu 10/11 Bayes' Nets: Representation

Ch. 14.1-2,4

Note 6: Bayes Nets

pdf / pptx lecture13

section 6 / exam-prep 6

 
Th 10/13 Bayes' Nets: Inference Ch. 14.3, Jordan 2.1 pdf / pptx

lecture14

P4: Bayes Net

F 10/28 5pm

Tu 10/18 Bayes' Nets: Sampling Ch. 14.4-5  pdf / pptx lecture15

HW7

section 7exam-prep 7

W 10/28 11:59pm

Th 10/20 Decision Networks / VPI

Ch. 15.1-3, 6

Note 7: Decision Networks

pdf / pptx lecture16


Tu 10/25 Markov Models and HMMs Ch. 15.2-5 pdf / pptx lecture17

HW8

section 8 / exam-prep 8

M 10/31 11:59pm

Th 10/27

HMMs and Particle Filtering

 Ch. 15.2,6

Note 8: HMM

pdf / pptx lecture18  

Tu 11/1 ML: Naive Bayes Ch. 15.2,6 pdf / pptx lecture19

(section 9 / exam-prep 9)

Th 11/3 ML: Perceptrons Ch. 15.2,6 pdf pptx lecture20

P5: Ghostbusters

F 11/18 5pm
HW8
Tu 11/8 No Lecture HW9 M 11/21 11:59pm
We 11/9 MIDTERM 2 (7-9p)

Th 11/10  ML: Deep Learning I pdf / pptx lecture21

Final Contest

Fri 12/9 11:59pm

Tu 11/15 ML: Deep Learning II   pdf / pptx

lecture22 (first 25 min)

lecture22 (last 40 min)

HW10

(section 10 / exam-prep 10)

W 11/30 11:59pm

Th 11/17 Alyosha Guest Lecture Lecture23

P6: Classification

M 12/5 5:00pm 

Tu 11/22 Advanced Topics: Speech Recognition   pdf / pptx Lecture24

Th 11/24 Thanksgiving  

Tu 11/29 Advanced Topics: Robotics   pdf / pptx lecture25 (section 11 / exam-prep 11)
Th 12/1 Advanced Topics / Final Contest   pdf / pptx lecture26

TBD FINAL EXAM