Skip to main content

Fall 2017 Syllabus

This syllabus is subject to change! Note that unreleased project out and due dates are just guesses and will likely change somewhat.

Day Topic Optional Reading Slides and Notes Video Assignment Due
Th 8/24 Introduction to AI Ch. 1,
Ch. 2

PDF

video Math Self-Diagnostic
P0: Tutorial
(ungraded)
Th 8/31 11:59pm

Tu 8/29 Agents and Search Ch. 3.1-4

PDF6up

lecture notes 1

discussion 1 

solutions + video

video

HW1

Tu 9/5 11:59pm

Th 8/31 A* Search and Heuristics Ch. 3.5-6

6uphandoutslide

lecture notes 1 (same as 8/29)

video P1: Search
Contest 1: Search
F 9/8 11:59pm
Su 9/24 11:59pm

Tu 9/5 Constraint Satisfaction Problems Ch. 6.1

6-up, handout, slide

lecture notes 2

discussion 2

solutions + video

exam-prep 1

exam-prep 1 solutions

video

HW2 

M 9/11 11:59pm

Th 9/7 CSPs II Ch. 6.2-5,
Ch. 4.1 

6up, handout, slides

lecture notes 2

video

Tu 9/12 Game Trees: Minimax Ch. 5.1-3

6uphandoutslides 

lecture notes 3

discussion 3

solutions + video

exam-prep 2

exam-prep 2 solutions

video

HW3 

W 9/20 11:59pm

Th 9/14 Game Trees: Expectimax; Utilities Ch. 5.4-5

6uphandoutslides 

lecture notes 3

video P2: Multi-Agent Search

F 9/22 11:59pm
M 9/25 11:59pm

Tu 9/19 Markov Decision Processes

Ch. 16.1-3,
Ch. 17.1-2

6up, handoutslides (draft)

lecture notes 4

discussion 4 

solutions + video

exam prep 3 

exam prep 3 solutions

video (section 4 / exam-prep 3)
Th 9/21 Markov Decision Processes II Ch. 17.3

6uphandoutslides

lecture notes 4

video HW4 W 9/27 11:59pm

Tu 9/26 Reinforcement Learning Ch. 21.1-3

6uphandoutslides

lecture notes 5

discussion 5 solutions + video

exam prep 4 

exam prep 4 solutions

video (section 5 / exam-prep 4)
Th 9/28 Reinforcement Learning II Ch. 21.4-5

6uphandoutslides

lecture notes 5

video

HW5

P3: Reinforcement Learning

W 10/4 11:59pm

Tu 10/10 11:59pm


Mo 10/2

Midterm   logistics

Midterm 1 Blank 

Midterm 1 Solutions

Th 10/5 Probability
Ch. 13.1-5 (2e: Ch. 13.1-6)

6uphandoutslides

lecture notes 6

discussion 6

 solutions + video

video (section 6 / exam-prep 5)

Tu 10/10 Markov Chains/Conditional Probability. Ch. 14.1-2,4

6uphandoutslides

lecture notes 6

discussion 7 / solutions

exam prep 5 / solutions

video

HW6

P4: Bayes Nets

Contest 2

(see Piazza and course)

W 10/18 11:59pm

T 10/24 11:59pm

Sun 10/29 11:59pm

Th 10/12 Bayes' Nets: Representation/Independence Ch. 14.3, Jordan 2.1

6uphandoutslides

lecture notes 6

video


Tu 10/17 Bayes' Nets: Independence/Inference Ch. 14.4-5

6uphandoutslides

exam prep 6 / solutions

discussion 8 / solutions

video HW7 F 10/27 11:59pm
Th 10/19 Bayes' Nets: Inference/Sampling Ch. 15.1-3, 6 6uphandoutslides video

Tu 10/24 Bayes' Nets:  Decision Networks Ch. 15.2-5

6uphandoutslides

exam prep 7 / solutions

discussion 9 solutions

lecture notes 7

video HW8 F 11/03 11:59pm
Th 10/26 HMMs/Particle Filtering Ch. 15.2,6

6uphandoutslides

lecture notes 8

video

Tu 10/31 ML:Naive Bayes. Ch. 15.2,6

6uphandoutslides

lecture note 9

exam prep 8 / solutions

discussion 10 / solutions

video

P5: Ghostbusters T 11/14 11:59pm
Th 11/2 ML: Perceptrons Ch. 15.2,6

6uphandoutslides

lecture notes 9

video HW9 Th 11/30 11:59pm

Tu 11/7 ML: Deep Learning I Ch. 15.2,6

6uphandoutslides

exam prep 9 / solutions

discussion 11 / solutions+vid

lecture notes 10

video
Th 11/9 MIDTERM (xx-xx)

Tu 11/14 ML: Deep Learning II

6uphandoutslides

exam prep 10 / solutions

discussion 12 / solutions+vid

multivar calc review

video F 12/1, 11:59pm
Th 11/16 Guest Lecture: Robotics (Pieter Abbeel) slides video P6: Machine Learning see piazza

Tu 11/21

Guest Lecture: Speech Recognition (Adam Janin)

slides (pdf)pptx video
Th 11/23 Thanksgiving break (No lecture)

Tu 11/28 Guest Lecture: Computer Vision (Alyosha Efros) / Final Contest

(section 13)

exam-prep 11 / solutions

Th 11/30 A little theory, and done. 6uphandoutslides video
Wed 12/13 FINAL EXAM (11:30am-2:30pm)