Skip to main content

Spring 2014 Syllabus

This syllabus is subject to change. In particular, the midterm dates will not be finalized until a week or so into the course.

Note that unreleased project out and due dates are just guesses and will likely change somewhat.

Day Topic Optional Reading Slides Video Assignment Due
Tu 1/21 Introduction to AI Ch. 1 1PP · 2PP
4PP · 6PP
Live
Edited
P0: Tutorial 1/24 5pm
Th 1/23 Uninformed Search Ch. 3.1-4 (2e: Ch. 3) 1PP · 2PP
4PP · 6PP
Live
Edited
   

Tu 1/28 A* Search and Heuristics Ch. 3.5-6 (2e: Ch. 4.1-2) 1PP · 2PP
4PP · 6PP
Live
Edited

HW1 (solutions)

(section 0 / solutions)
(section 1 / solutions)

2/3
Th 1/30 Constraint Satisfaction Problems

Ch. 6.1 (2e: Ch. 5.1)
Backtracking Demo

1PP · 2PP
4PP · 6PP
Live
Edited

P1: Search

Mini-Contest 1: Results

2/7 5pm

Tu 2/4 CSPs II Ch. 6.2-5 (2e: Ch. 5.2-4) 1PP · 2PP
4PP · 6PP
Live
Edited

HW2 (solutions)

(section 2 / solutions)

2/10
Th 2/6 Game Trees: Minimax Ch. 5.2-5 (2e: Ch. 6.2-5) 1PP · 2PP
4PP · 6PP
Live
Edited
   

Tu 2/11 Game Trees: Expectimax; Utilities Ch. 5.2-5 (2e: Ch. 6.2-5), 16.1-16.3 1PP · 2PP
4PP · 6PP
Live
Edited

HW3 (solutions)

(section 3 / solutions)

2/18
Th 2/13 Markov Decision Processes Ch. 17.1-3 1PP · 2PP
4PP · 6PP
Live
Edited

P2: Multi-Agent Pacman

Mini-Contest 2: Results

2/21 5pm

Tu 2/18 Markov Decision Processes II Ch. 17.1-3, Sutton and Barto Ch. 3-4 1PP · 2PP
4PP · 6PP
Live
Edited

HW4 (solutions)

(section / solutions)

2/24
Th 2/20 Reinforcement Learning Ch. 21, S&B Ch. 6.1,2,5 1PP · 2PP
4PP · 6PP
Live
Edited
   

Tu 2/25 Reinforcement Learning II  Ch. 21 1PP · 2PP
4PP · 6PP
Live
Edited

HW5 (solutions)

(section / solutions)

3/3
         

P3: Reinforcement Learning

Mini-Contest 3: Results

3/7 5pm
Th 2/27 Probability Ch. 13.1-5 (2e: Ch. 13.1-6) 1PP · 2PP
4PP · 6PP
Live Practice Midterm ( solutions ) 3/8

Tu 3/4 Markov Models Ch. 15.2,5 1PP · 2PP
4PP · 6PP
Live    
Th 3/6 Hidden Markov Models Ch. 15.2,5 1PP · 2PP
4PP · 6PP
Live    

Mo 3/10 MIDTERM 1, (6:30-9:30 PM, 120 Latimer OR 1 Pimentel OR 145 Dwinelle) (no lecture)      

HW6 (solutions)

(section / solutions)

3/17
Th 3/13 Applications of HMMs Ch. 15.2,6 1PP · 2PP
4PP · 6PP
Live P4: Ghostbusters 3/21 5pm

Tu 3/18 Bayes' Nets: Representation Ch. 14.1-2,4 1PP · 2PP
4PP · 6PP
Live

HW7 (solutions)

(section / solutions)

4/1
Th 3/20 Bayes' Nets: Independence Ch. 14.1-2,4 1PP · 2PP
4PP · 6PP
Live    

Tu 3/25 Spring Break          
Th 3/27 Spring Break          

Tu 4/1 Bayes' Nets: Inference Ch. 14.4, Jordan 2.1 1PP · 2PP
4PP · 6PP
Live

HW8 (solutions)

(section / solutions)

4/7
Th 4/3 Bayes' Nets: Sampling Ch. 14.4-5 1PP · 2PP
4PP · 6PP
Live (Fall 13)    

Tu 4/8 Decision Diagrams / VPI Ch. 16.5-6 1PP · 2PP
4PP · 6PP
Live

HW9 (solutions)

(section / solutions)

4/14
          Practice Midterm 2 (solutions) 4/19
Th 4/10 ML: Naive Bayes Ch. 20.1-20.2.2 1PP · 2PP
4PP · 6PP
Live Contest: Pacman Capture the Flag 4/27

Tu 4/15 ML: Perceptrons Ch. 18.6.3 1PP · 2PP
4PP · 6PP
Live    
Th 4/17 ML: Kernels and Clustering Ch. 18.8 1PP · 2PP
4PP · 6PP
Live  (section / solutions)  

Mo 4/21 MIDTERM 2 (6:30-9:30 PM, 1 PIMENTEL OR 145 DWINELLE OR 120 LATIMER) (no lecture)      

HW10 (solutions)

(section / solutions)

P5: Classification

 

4/28

5/9 5pm

Th 4/24 Advanced Applications: NLP, Games and Cars   1PP · 2PP
4PP · 6PP
Live    

Tu 4/29 Advanced Applications: (Robotics and Computer Vision)   1PP · 2PP
4PP · 6PP
Live    
Th 5/1 Advanced Topics and Final Contest   1PP · 2PP
4PP · 6PP
Live Practice Final (solutions) 5/10

Th 5/15 FINAL EXAM (3-6pm)