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0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [26]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades since it’s the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on different processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of a parallel program, let us first consider the following sequential
program for computing the sum of the elements of an array of integers, X:

This program is simple to understand since it sums the elements of X sequentially from left to right. However,
we could have obtained the same algebraic result by summing the elements from right to left instead. This
over-specification of the ordering of operations in sequential programs has been classically referred to as
the Von Neumann bottleneck [2]. The left-to-right evaluation order for the program in Listing 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting the program in Listing 1 to a parallel program? The answer depends on
the parallel programming constructs that are available for our use. Let’s use the word, task, to denote a
sequential subcomputation of a parallel program. A task can be made as small or as large as needed. We can
think of the start of program execution as a single root task. We now informally introduce two constructs,
async and finish2, which we will study in more detail later:

• The statement “async 〈stmt〉” causes the parent task to create a new child task to execute 〈stmt〉
asynchronously (i.e., before, after, or in parallel) with the remainder of the parent task.

• The statement “finish 〈stmt〉” causes the parent task to execute 〈stmt〉 and then wait until all async
tasks created within 〈stmt〉 have completed.

The notation, 〈stmt〉, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
〈stmt〉 too. The use of angle brackets in “〈stmt〉” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.

1These lecture notes include citation such as [26] as references for optional further reading.
2These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable differences as well, as you will see later in the course.
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1 int sum = 0 ;
2 for ( int i=0 ; i < X. length ; i++ ) sum += X[ i ] ;

Listing 1: Sequential ArraySum

+ 
+ 

+ 

X[0] 

X[1] 

X[2] 

… 

0 

Figure 1: Computation graph for code example in Listing 1 (Sequential ArraySum)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Figure 2. Note that the graph structure is different from Figure 1 since there is no edge or sequence of
edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3 can execute in parallel with each
other; for example, if your computer has two processor cores, T2 and T3 can be executed on two different
processors at the same time. We will see much richer examples of parallel programs using async, finish and
other constructs during the course.

0.2 Why is Parallel Programming important?

Historically, parallel programming was motivated by the need for speed and memory. When a problem is
too large to fit or solve quickly on a single computer, we use multiple computers to solve it instead. Figure 3
shows the historical trend of the number of processors used in the Top 500 computers3 during 1993–2010. In
1993, the maximum number of processors used was in the 1025–2048 range, whereas that number increased
to over 128,000 in 2010 and is projected to reach one billion in the next decade!

Until recently, all computer users could reasonably expect the speed of a single computer to increase rapidly
with new generations of hardware technology, and the motivation for parallel computing was low among
mainstream computer users. Now, parallel programming has becoming important for all computers in the
world — even laptops and smart-phones — because clock frequencies for individual processors are no longer
increasing. For example, in 1980, a major milestone for researchers was to build a microprocessor that could
execute one million instructions per second (1 MIPS) with clock speeds in the range of 1 Megahertz (106

cycles per second). Now, all commodity personal computers and laptops have processors with clock speeds
that exceed 1 Gigahertz (109 cycles per second). This increase in speed was predicted by two observations
from the 1960’s and 1970’s that are now referred to as Moore’s Law [22] and Dennard Scaling [8]. Moore’s
Law predicted that the transistor density of semiconductor chips would double roughly every 18 months i.e.,
the transistor feature size would decrease by

√
2 roughly every 18 months. Dennard Scaling predicted that

as transistors get smaller, they will switch faster and use less power. Even though this ability to increase
the number of transistors in a chip continues unabated, a major disruption for the computer industry is that
clock speeds are not expected to increase beyond the Gigahertz level in the foreseeable future.

There are multiple complex factors that have contributed to clock speeds plateauing at the Gigahertz level.
They involve a detailed understanding of semiconductor physics and silicon technologies, but here’s a simple
summary. In a nutshell, for clock speeds in the Gigahertz or higher range, the power consumed by a processor

3This list is compiled by measuring the rate at which each computer can perform a pre-assigned dense matrix computation
called High Performance LINPACK (HPL).
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1 // Star t o f Task T1 (main program )
2 sum1 = 0 ; sum2 = 0 ; // Assume that sum1 & sum2 are f i e l d s ( not l o c a l vars )
3 f in ish {
4 // Compute sum1 ( lower h a l f ) and sum2 ( upper h a l f ) in p a r a l l e l
5 async for ( int i=0 ; i < X. length /2 ; i++) sum1 += X[ i ] ; // Task T2
6 async for ( int i=X. l ength /2 ; i < X. length ; i++) sum2 += X[ i ] ; // Task T3
7 }
8 //Task T1 waits f o r Tasks T2 and T3 to complete
9 int sum = sum1 + sum2 ; // Continuat ion o f Task T1

Listing 2: Two-way Parallel ArraySum

T1 

T2 

T1 

T3 

// Continuation of Task T1 

// Start of Task T1 (main program) 

Figure 2: Computation graph for code example in Listing 2 (Two-way Parallel ArraySum)

Figure 3: Historical chart showing the distribution of the number of processors used in the Top 500 computers
from 1993 to 2010 (source: http://www.top500.org)
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using current device technologies varies as the cube of the frequency, Power α (Frequency)3. Processor chips
in laptop and personal computers are typically limited to consume at most 75 Watts because a larger power
consumption would lead to chips overheating and malfunctioning, given the limited air-cooling capacity
of these computers. This power limitation has been referred to as the “Power Wall”. The Power Wall
is even more critical for smart-phones and handheld devices than for server systems because larger power
consumption leads to a shorter battery life. Thus, the dilemma facing the computer industry is: what to
do when the number of transistors continues to double every 18 months, but the power budget and clock
frequency can no longer be increased?

This dilemma is being solved by the introduction of multicore processor chips, each of which contains multiple
processor cores. If your laptop has a processor chip named “Intel Core 2 Duo”, it means that you have your
very own parallel computer at your fingertips. It contains two processor cores that can execute independent
instruction streams such as the two async tasks shown in Listing 2. This is a sea change in the history of
personal computers, since the only parallel computers available until 2005 were expensive servers with prices
that started at around 100,000 US dollars. How did the introduction of multicore processors help with over-
coming the Power Wall? Consider a 1 GHz processor chip that consumes power P , and two options for how
to use the extra transistors when the number of transistors is doubled. With Option A, the clock frequency
is doubled to 2 GHz thereby leading to a power consumption of 8P (recall that Power α (Frequency)3). With
Option B, two cores are created, each with clock speed still at 1 GHz, thereby leading to a power consump-
tion of 2P (with power P consumed by each core). In theory, both options deliver the same computation
capacity, but Option B does so with one-fourth the power of Option A4. Extrapolating to the future, the
number of cores per chip will have to continue to increase because of the Power Wall. Some projections
are that the number of cores in general-purpose chips will exceed one thousand by 2020. Some specialized
processors such as NVIDIA’s Kepler GPGPU chip already contain more than 1500 cores today.

The final observation is that the challenge of exploiting parallelism across these large numbers of cores falls
squarely on the shoulders of software. When hardware makes multiple cores available to the user, it expects
that software will somehow find a way of decomposing its workload to execute in parallel across the cores.
Of course, the majority of computer users will not need to worry about parallel programming, just like the
majority of computer users today don’t worry about sequential programming. However, given that the entire
computing industry has bet on parallelism, there is a desperate need for all Computer Science majors to be
aware of the fundamentals of parallel software and parallel programming. That is why we have created an
undergraduate-level course on “Fundamentals of Parallel Programming” that can be taken at the sophomore,
or even freshman, level.

4Caveat: a number of simplifying assumptions were made in this analysis.

5 of 40



COMP 322
Spring 2014

COMP 322: Fundamentals of Parallel Programming

Module 1: Deterministic Shared-Memory Parallelism

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 4: A example code schema with async and finish constructs

1 Task-level Parallelism

1.1 Task Creation and Termination (Async, Finish)

1.1.1 Async notation for Task Creation

As mentioned earlier in Section 0.1, the statement “async 〈stmt〉” causes the parent task to create a new
child task to execute 〈stmt〉 asynchronously (i.e., before, after, or in parallel) with the remainder of the
parent task. Figure 4 illustrates this concept by showing a code schema in which the parent task, T0, uses
an async construct to create a child task T1. Thus, STMT1 in task T1 can potentially execute in parallel with
STMT2 in task T0.

async is a powerful primitive because it can be used to enable any statement to execute as a parallel task,
including for-loop iterations and method calls. Listing 3 shows some example usages of async. These
examples are illustrative of logical parallelism. Later in the course, you will learn the impact of overheads
in determining what subset of ideal parallelism can be useful for a given platform.

Note that all code examples in the module handouts should be treated as “pseudo-code”. They were derived
from the Habanero-Java research language [6, 15]. However, all programming projects in COMP 322 will be
done in standard Java using the newly created Habanero-Java library (HJlib).

In Example 1 in Listing 3, the for loop sequentially increments index variable i, but all instances of the loop
body can logically execute in parallel because of the async statement. As you will learn later in the course,
a data race occurs if two parallel computations access the same shared location in an “interfering” manner
i.e., such that at least one of the accesses is a write (so called because the effect of the accesses depends on
the outcome of the “race” between them to determine which one completes first). There are no data races
in the parallel programs shown in Examples 1–4.

The pattern of parallelizing counted for-loops in Example 1 occurs so commonly in practice that many
parallel languages include a separate construct for this case. In HJ, the parallel loop constructs are called
forasync and forall, which you will study later in the course.

In Example 2 in Listing 3, the async is used to parallelize computations in the body of a pointer-chasing
while loop. Though the sequence of p = p.next statements is executed sequentially in the parent task, all
instances of the remainder of the loop body can logically execute in parallel.

Example 3 in Listing 3 shows the computation in Example 2 rewritten as a static void recursive method.
You should first convince yourself that the computations in Examples 2 and 3 are equivalent by omitting
the async keyword in each case. An interesting point to note in Example 3 is that a method can return
even though its child async tasks may not have completed. It’s only the enclosing finish that awaits the
completion of the async’s. If you need to ensure that all async’s are completed before a method returns,
then the method body should be enclosed in a finish. Example 4 shows the use of async to execute two
method calls as parallel tasks.
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1 // Example 1 : execute i t e r a t i o n s o f a counted f o r loop in p a r a l l e l
2 // (we w i l l l a t e r s ee f o r a l l l oops as a shorthand f o r t h i s common case )
3 for ( int i = 0 ; i < A. length ; i++)
4 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to async
5
6 // Example 2 : execute i t e r a t i o n s o f a whi l e loop in p a r a l l e l
7 p = f i r s t ;
8 while ( p != null ) {
9 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async

10 p = p . next ;
11 }
12
13 // Example 3 : Example 2 r ewr i t t en as a r e c u r s i v e method
14 stat ic void proce s s (T p) {
15 i f ( p != null ) {
16 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
17 proce s s (p . next ) ;
18 }
19 }
20
21 // Example 4 : execute method c a l l s in p a r a l l e l
22 async l e f t s = quickSort ( l e f t ) ;
23 async r i g h t s = quickSort ( r i g h t ) ;

Listing 3: Example usages of async

As these examples show, an HJ program can create an unbounded number of tasks at runtime. The HJ
runtime system is responsible for scheduling these tasks on a fixed number of processors. It does so by
creating a fixed number of worker threads as shown in Figure 5, typically one worker per processor core.
Worker threads are allocated by the Operating System (OS). By creating one thread per core, we limit the
role of the OS in task scheduling to that of binding threads to cores at the start of program execution, and
let the HJ runtime system take over from that point onwards. These workers repeatedly pull work from a
logical work queue when they are idle, and push work on the queue when they generate more work. The
work queue entries can include async’s and continuations. An async is the creation of a new task, such as
T1 in Figure 4. A continuation5 represents a potential suspension point for a task, which (as shown in in
Figure 4) can include the point after an async creation as well as the point following the end of a finish
scope. Continuations are also referred to as task-switching points, because they are program points at which
a worker may switch execution between different tasks. A key motivation for this separation between tasks
and threads is that it would be prohibitively expensive to create a new OS-level worker thread for each async

task that is created in the program.

An important point to note in Figure 5 is that local variables are private to each task, whereas static
and instance fields are shared among tasks. This is similar to the rule for accessing local variables and
static/instance fields within and across Java methods. Listing 4 summarizes the rules for accessing local
variables across async boundaries. For convenience, as shown in Rules 1 and 2, an inner async is allowed
to access a local variable declared in an outer async or method by simply capturing the value of the local
variable when the async task is created (analogous to capturing the values of local variables in parameters at
the start of a method call). Note that an inner async is not permitted to modify a local variable declared in
an outer scope (Rule 3) because doing so will violate the assumption that local variables are private to each
task. If needed, you can work around this constraint by replacing the local variable by a static or instance
field, since fields can be shared among tasks. However, be warned that errors in reading and writing shared

5This use of “continuation” is different from continuations in functional programming languages.
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w1 w2 w3 w4 

push 
work 

pull 
work 

Logical Work Queue 
(async’s & continuations) 

Workers 

Local variables are 
private to each task 

Static & instance fields are shared among tasks 

Figure 5: Scheduling an HJ program on a fixed number of workers. (Figure adapted from [12].)

1 // Rule 1 : an inner async may read the value o f any outer f i n a l l o c a l var
2 f ina l int i 1 = 1 ;
3 async { . . . = i 1 ; /∗ i 1=1 ∗/ }
4
5 // Rule 2 : an inner async may read the value o f any outer l o c a l var
6 int i 2 = 2 ; // i 2=2 i s copied on entry in to the async l i k e a method param
7 async { . . . = i 2 ; /∗ i 2=2∗/}
8 i 2 = 3 ; // This ass ignment i s not seen by the above async
9

10 // Rule 3 : an inner async i s not permitted to modify an outer l o c a l var
11 int i 3 ;
12 async { i 3 = . . . ; /∗ ERROR ∗/}

Listing 4: Rules for accessing local variables across async’s
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fields and arrays among tasks can lead to data races, which are notoriously hard to debug.

1.1.2 Finish notation for Task Termination

Look back at the code schema in Figure 4. It included a finish statement, which was defined as follows in
Section 0.1: the statement “finish 〈stmt〉” causes the parent task to execute 〈stmt〉 and then wait until all
async tasks created within 〈stmt〉 have completed.

Thus, the finish statement in Figure 4 is used by task T0 to ensure that child task T1 has completed executing
STMT1 before T0 executes STMT3. If T1 created a child async task, T2 (a “grandchild” of T0), T0 will wait for
both T1 and T2 to complete in the finish scope before executing STMT3. This waiting is also referred to as a
synchronization. There is an implicit finish scope surrounding the body of main() so program execution
will only end after all async tasks have completed. The nested structure of finish ensures that no deadlock
cycle can be created between two tasks such that each is waiting on the other due to end-finish operations.
(A deadlock cycle refers to a situation where two tasks can be blocked indefinitely because each is waiting
for the other to complete some operation.) Also, each dynamic instance TA of an async task has a unique
Immediately Enclosing Finish (IEF) instance F of a finish statement during program execution, where F
is the innermost finish containing TA.

Like async, finish is a powerful primitive because it can be wrapped around any statement thereby support-
ing modularity in parallel programming. Why do you need finish constructs beyond the implicit finish in
main()? Because a parent (ancestor) task needs to be sure that its child (descendant) tasks have completed
before it can access the results that they computed. This could occur if STMT3 in Figure 4 used a value
computed by STMT1. You saw a concrete example of this case in the Two-way Parallel ArraySum program
discussed in Section 0.1 where the finish was used to ensure that sum1 and sum2 were fully computed before
their values were used to compute sum.

If you want to convert a sequential program into a parallel program, one approach is to insert async state-
ments at points where the parallelism is desired, and then insert finish statements to ensure that the parallel
version produces the same result as the sequential version. Listing 5 extends the first two code examples
from Listing 3 to show the sequential version, an incorrect parallel version with only async’s inserted, and
a correct parallel version with both async’s and finish’s inserted.

async and finish statements also jointly define what statements can potentially be executed in parallel
with each other. Consider the HJ code fragment and finish-async nesting structure shown in Figure 6:

Figure 6 reveals which pairs of statements can potentially execute in parallel with each other. For example,
task A2 can potentially execute in parallel with tasks A3 and A4 since async A2 was launched before entering
the finish F2, which is the Immediately Enclosing Finish for A3 and A4. However, Part 3 of Task A0 cannot
execute in parallel with tasks A3 and A4 since it is performed after finish F2 is completed.

1.1.3 Exception Semantics

Besides termination detection, the finish statement plays an important role with regard to exception
semantics. If any async throws an exception, then its IEF statement throws a MultiException [7] formed
from the collection of all exceptions thrown by all async’s in the IEF. Consider Listing 7, which is Listing 6
extended with two try-catch blocks. If async task A3 throws an exception, the exception will not be caught
as e1 (line 8) but instead as e2 (line 11), since the catch block for e2 encloses the finish statement containing
A2. The catch block for e1 only catches any errors that may occur in the creation of an async (e.g., an
OutOfMemoryError), not the execution of the async.

If the program has no try-catch blocks, then an error message is displayed on the console upon program exit.

1.2 Computation Graphs

A Computation Graph (CG) is a formal structure that captures the meaning of a parallel program’s execution.
When you learned sequential programming, you were taught that a program’s execution could be understood
as a sequence of operations that occur in a well-defined total order, such as the left-to-right evaluation order
for expressions. Since operations in a parallel program do not occur in a fixed order, some other abstraction
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1 // Example 1 : Sequent i a l v e r s i on
2 for ( int i = 0 ; i < A. length ; i++) A[ i ] = B[ i ] + C[ i ] ;
3 System . out . p r i n t l n (A [ 0 ] ) ;
4
5 // Example 1 : I n c o r r e c t p a r a l l e l v e r s i on
6 for ( int i = 0 ; i < A. length ; i++) async A[ i ] = B[ i ] + C[ i ] ;
7 System . out . p r i n t l n (A [ 0 ] ) ;
8
9 // Example 1 : Correct p a r a l l e l v e r s i on

10 f in ish for ( int i = 0 ; i < A. length ; i++) async A[ i ] = B[ i ] + C[ i ] ;
11 System . out . p r i n t l n (A [ 0 ] ) ;
12
13 // Example 2 : Sequent i a l v e r s i on
14 p = f i r s t ;
15 while ( p != null ) {
16 p . x = p . y + p . z ; p = p . next ;
17 }
18 System . out . p r i n t l n ( f i r s t . x ) ;
19
20 // Example 2 : I n c o r r e c t p a r a l l e l v e r s i on
21 p = f i r s t ;
22 while ( p != null ) {
23 async { p . x = p . y + p . z ; }
24 p = p . next ;
25 }
26 System . out . p r i n t l n ( f i r s t . x ) ;
27
28 // Example 2 : Correct p a r a l l e l v e r s i on
29 p = f i r s t ;
30 f in ish while ( p != null ) {
31 async { p . x = p . y + p . z ; }
32 p = p . next ;
33 }
34 System . out . p r i n t l n ( f i r s t . x ) ;

Listing 5: Correct parallelization with async and finish
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1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 f in ish { // F2
5 // Part 2 o f Task A0
6 async A3 ;
7 async A4 ;
8 }
9 // Part 3 o f Task A0

10 }

Listing 6: Example usage of async and finish

Task A4 

finish 

async async 

Task A0 (Part 3) 

Task A0 (Part 2) 

finish 
Task A0 (Part 1) 

async 

Task A1 

async 

Task A2 
Task A3 

Figure 6: Finish-async nesting structure for code fragment in Listing 6

1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 try {
5 f in ish { // F2
6 // Part 2 o f Task A0
7 try { async A3 ; }
8 catch ( Throwable e1 ) { } ; // w i l l not catch except ion in A3
9 async A4 ;

10 }
11 } catch ( Throwable e2 ) { } ; // w i l l catch except ion in A3
12 // Part 3 o f Task A0
13 }

Listing 7: Extension of Listing 6 with try-catch blocks
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is needed to understand the execution of parallel programs. Computation Graphs address this need by
focusing on the extensions required to model parallelism as a partial order. Specifically, a Computation
Graph consists of:

• A set of nodes, where each node represents a step consisting of an arbitrary sequential computation.
For HJ programs with async and finish constructs, a task’s execution can be divided into steps by
using continuations to define the boundary points. Recall from Section 1.1.1 that a continuation point
in an HJ task is the point after an async creation or a point following the end of a finish scope. It
is acceptable to introduce finer-grained steps in the CG if so desired i.e., to split a step into smaller
steps. The key constraint is that a step should not contain any parallelism or synchronization i.e., a
continuation point should not be internal to a step.

• A set of directed edges that represent ordering constraints among steps. For async–finish programs,
it is useful to partition the edges into three cases [12]:

1. Continue edges that capture sequencing of steps within a task — all steps within the same task
are connected by a chain of continue edges.

2. Spawn edges that connect parent tasks to child async tasks. When an async is created, a spawn
edge is inserted between the step that ends with the async in the parent task and the step that
starts the async body in the new child task.

3. Join edges that connect descendant tasks to their Immediately Enclosing Finish (IEF) operations.
When an async terminates, a join edge is inserted from the last step in the async to the step in
the ancestor task that follows the IEF operation.

Consider the example HJ program shown in Listing 8 and its Computation Graph shown in Figure 7. There
are 6 tasks in the CG, T1 to T6. This example uses finer-grained steps than needed, since some steps (e.g., v1
and v2) could have have been combined into a single step. In general, the CG grows as a program executes
and a complete CG is only available when the entire program has terminated. The three classes of edges
(continue, spawn, join) are shown in Figure 7. Even though they arise from different constructs, they all
have the same effect viz., to enforce an ordering among the steps as dictated by the HJ program.

In any execution of the CG on a parallel machine, a basic rule that must be obeyed is that a successor node
B of an edge (A,B) can only execute after its predecessor node A has completed. This relationship between
nodes A and B is referred to as a dependence because the execution of node B depends on the execution of
node A having completed. In general, node Y depends on node X if there is a path of directed edges from
X to Y in the CG. Therefore, dependence is a transitive relation: if B depends on A and C depends on B,
then C must depend on A. The CG can be used to determine if two nodes may execute in parallel with each
other. For example, an examination of Figure 7 shows that all of nodes v3 . . . v15 can potentially execute
in parallel with node v16 because there is no directed path in the CG from v16 to any node in v3 . . . v15 or
vice versa.

It is also important to observe that the CG in Figure 7 is acyclic i.e., it is not possible to start at a node
and trace a cycle by following directed edges that leads back to the same node. An important property of
CGs is that all CGs are directed acyclic graphs, also referred to as dags. As a result, the terms “computation
graph” and “computation dag” are often used interchangeably.

In addition to providing the dependence structure of a parallel program, Computation Graphs can also be
used to reason about the execution time complexity of a parallel program as follows:

• Assume that the execution time, time(N), is known for each node N in the CG. Since N represents an
uninterrupted sequential computation, it is assumed that time(N) does not depend on how the CG is
scheduled on a parallel machine. (This is an idealized assumption because the execution time of many
operations, especially memory accesses, can depend on when and where the operations are performed
in a real computer system.)
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1 // Task T1
2 v1 ; v2 ;
3 f in ish {
4 async {
5 // Task T2
6 v3 ;
7 f in ish {
8 async { v4 ; v5 ; } // Task T3
9 v6 ;

10 async { v7 ; v8 ; } // Task T4
11 v9 ;
12 } // f i n i s h
13 v10 ; v11 ;
14 async { v12 ; v13 ; v14 ; } // Task T5
15 v15 ;
16 }
17 v16 ; v17 ;
18 } // f i n i s h
19 v18 ; v19 ;
20 f in ish {
21 async { v20 ; v21 ; v22 ; }
22 }
23 v23 ;

Listing 8: Example HJ program

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 7: Computation Graph G for example HJ program in Listing 8
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• Define WORK(G) to be the sum of the execution times of the nodes in CG G,

WORK(G) =
∑

node N in G

time(N)

Thus, WORK(G) represents the total amount of work to be done in CG G.

• Define CPL(G) to be the length of the longest path in G, when adding up the execution times of all
nodes in the path. There may be more than one path with this same length. All such paths are referred
to as critical paths, so CPL stands for critical path length.

Consider again the CG, G, in Figure 7. For simplicity, we assume that all nodes have the same execution
time, time(N) = 1. It has a total of 23 nodes, so WORK(G) = 23. In addition the longest path consists of
17 nodes as follows, so CPL(G) = 17:

v1→ v2→ v3→ v6→ v7→ v8→ v10→ v11→ v12→ v13→ v14→ v18→ v19→ v20→ v21→ v22→ v23

1.3 Ideal Parallelism

Given the above definitions of WORK and CPL, we can define the ideal parallelism of Computation Graph
G as the ratio, WORK(G)/CPL(G). The ideal parallelism can be viewed as the maximum performance
improvement factor due to parallelism that can be obtained for computation graph G, even if we ideally had
an unbounded number of processors. It is important to note that ideal parallelism is independent of the
number of processors that the program executes on, and only depends on the computation graph

1.4 Multiprocessor Scheduling

Now, let us discuss the execution of CG G on an idealized parallel machine with P processors. It is idealized
because all processors are assumed to be identical, and the execution time of a node is assumed to be
independent of which processor it executes on. Consider all legal schedules of G on P processors. A legal
schedule is one that obeys the dependence constraints in the CG, such that for every edge (A,B) the scheduled
guarantees that B is only scheduled after A completes. Let tP denote the execution time of a legal schedule.
While different schedules may have different execution times, they must all satisfy the following two lower
bounds:

1. Capacity bound: tp ≥ WORK(G)/P . It is not possible for a schedule to complete in time less than
WORK(G)/P because that’s how long it would take if all the work was perfectly divided among P
processors.

2. Critical path bound: tp ≥ CPL(G). It is not possible for a schedule to complete in time less than
CPL(G) because any legal schedule must obey the chain of dependences that form a critical path.
Note that the critical path bound does not depend on P .

Putting these two lower bounds together, we can conclude that tp ≥ max(WORK(G)/P,CPL(G)). Thus,
if the observed parallel execution time tP is larger than expected, you can investigate the problem by
determining if the capacity bound or the critical path bound is limiting its performance.

It is also useful to reason about the upper bounds for tP . To do so, we have to make some assumption about
the “reasonableness” of the scheduler. For example, an unreasonable scheduler may choose to keep processors
idle for an unbounded number of time slots (perhaps motivated by locality considerations), thereby making
tP arbitrarily large. The assumption made in the following analysis is that all schedulers under consideration
are “greedy” i.e., they will never keep a processor idle when there’s a node that is available for execution.

We can now state the following properties for tP , when obtained by greedy schedulers:

• t1 = WORK(G). Any greedy scheduler executing on 1 processor will simply execute all nodes in the
CG in some order, thereby ensuring that the 1-processor execution time equals the total work in the
CG.
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• t∞ = CPL(G). Any greedy scheduler executing with an unbounded (infinite) number of processors must
complete its execution with time = CPL(G), since all nodes can be scheduled as early as possible.

• tP ≤ t1/P + t∞ = WORK(G)/P + CPL(G). This is a classic result due to Graham [11]. An informal
sketch of the proof is as follows. At any given time in the schedule, we can declare the time slot
to be complete if all P processors are busy at that time and incomplete otherwise. The number of
complete time slots must add up to at most t1/P since each such time slot performs P units of work.
In addition, the number of incomplete time slots must add up to at most t∞ since each such time slot
must advance 1 time unit on a critical path. Putting them together results in the upper bound shown
above. Combining it with the lower bound, you can see that:

max(WORK(G)/P,CPL(G)) ≤ tP ≤WORK(G)/P + CPL(G)

It is interesting to compare the lower and upper bounds above. You can observe that they contain
the max and sum of the same two terms, WORK(G)/P and CPL(G). Since x + y ≤ 2 max(x, y), the
lower and upper bounds vary by at most a factor of 2×. Further, if one term dominates the other e.g.,
x� y, then the two bounds will be very close to each other.

1.4.1 HJ Abstract Performance Metrics

While Computation Graphs provide a useful abstraction for reasoning about performance, it is not practical
to build Computation Graphs by hand for large HJ programs. HJ includes the following utilities to help
programmers reason about the CGs for their programs:

• Insertion of calls to perf.doWork(). The programmer can insert a call of the form perf.doWork(N)

anywhere in a step to indicate execution of N application-specific abstract operations e.g., floating-
point operations, comparison operations, stencil operations, or any other data structure operations.
Multiple calls to perf.doWork() are permitted within the same step. They have the effect of adding
to the abstract execution time of that step. The main advantage of using abstract execution times is
that the performance metrics will be the same regardless of which physical machine the HJ program
is executed on. The main disadvantage is that the abstraction may not be representative of actual
performance on a given machine.

• Execution with the -perf=true option. If an HJ program is executed with this option, abstract met-
rics are printed at end of program execution that capture the total number of operations executed
(WORK) and the critical path length (CPL) of the CG generated by the program execution. The
ratio, WORK/CPL is also printed as a measure of ideal speedup for the abstract metrics.

1.5 Parallel Speedup and Amdahl’s Law

Given definitions for t1 and tP , the speedup for a given schedule of a computation graph on P processors is
defined as Speedup(P) = t1/tP . Speedup(P) is the factor by which the use of P processors speeds up execution
time relative to 1 processor, for a fixed input size For ideal executions without overhead, 1 ≤ Speedup(P) ≤ P .
The term linear speedup is used for a program when Speedup(P) = k × P as P varies, for some constant k,
0 < k < 1.

We conclude this unit with a simple observation made by Gene Amdahl in 1967 [1] that can be summarized
as follows: if q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially, then
the best speedup that can be obtained for that program, even with an unbounded number of processors,
is Speedup ≤ 1/q. As in the Computation Graph model studied earlier, this observation assumes that all
processors are uniform i.e., they all execute at the same speed.

This observation follows directly from a lower bound on parallel execution time that you are familiar with,
namely tP ≥ CPL(G), where tP is the execution time of computation graph G on P processors and CPL
is the critical path length of graph G. If fraction q of WORK is sequential, it must be the case that
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Figure 8: Illustration of Amdahl’s Law (source: http://en.wikipedia.org/wiki/Amdahl’s law)

CPL(G) ≥ qWORK. Therefore, Speedup = t1/tP must be ≤ WORK/(qWORK) = 1/q since t1 = WORK
for greedy schedulers.

The consequence of Amdahl’s Law is illustrated in Figure 8. The x-axis shows the number of processors
increasing in powers of 2 on a log scale, and the y-axis represents speedup obtained for different values of
q. Specifically, each curve represents a different value for the parallel portion, (1− q), assuming that all the
non-sequential work can be perfectly parallelized. Even when the parallel portion is as high as 95%, the
maximum speedup we can obtain is 20× since the sequential portion is 5%. The ideal case of q = 0 and a
parallel portion of 100% is not shown in the figure, but would correspond to the y = x line which would
appear to be an exponential curve since the x-axis is plotted on a log scale.

Amdahl’s Law reminds us to watch out for sequential bottlenecks both when designing parallel algorithms
and when implementing programs on real machines. While it may paint a bleak picture of the utility of
adding more processors to a parallel computing, it has also been observed that increasing the data size
for a parallel program can reduce the sequential portion [14] thereby making it profitable to utilize more
processors. The ability to increase speedup by increasing the number of processors for a fixed input size
(fixed WORK) is referred to as strong scaling, and the ability to increase speedup by increasing the input
size (increasing WORK) is referred to as weak scaling.

1.6 Parallel Quicksort

1.6.1 Parallelizing Quicksort: Approach 1

Quicksort is a classical sequential sorting algorithm introduced by C.A.R. Hoare in 1961 [18], and is still
very much in use today. There are a number of factors that have contributed to its longevity. First, it is
simple to implement. Second, even though it has a worst case O(n2) execution time complexity, it executes
sequentially in O(n log n) time in practice. Third, it is an “in place” sorting algorithm i.e., it does not need
the allocation of a second copy of the array. For many computers today, the “in place” characteristic may not
be as important now as it was 50 years ago. Finally, Quicksort epitomizes the divide-and-conquer paradigm
of computer algorithms, which naturally lend themselves to parallel implementations.
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Figure 9: Algorithm 64: Quicksort (source: [18])

As a historical note, Figure 9 contains a facsimile of the exact description of the original Quicksort algorithm
from 1961 [18]. (Note that the comment section is longer than the code for the algorithm!) A call to
quicksort(A,M,N) has the effect of sorting array elements A[M . . .N ] in place. The value keyword indicates
that integer parameters M and N will not be changed (as in Java’s final declaration). The body of the
procedure is enclosed in the keywords, begin and end. The divide and conquer stages in this algorithm are
captured as follows:

Divide: The call to partition(A,M,N,I,J) partitions the subarray, A[M . . .N ] into disjoint sub-arrays, A[M . . . J ]
and A[I . . . N ] (where M ≤ J < I ≤ N) such that all elements in A[M . . .N ] are guaranteed to be
≤ all elements in A[J + 1 . . . I − 1], which in turn are guaranteed to be ≤ all elements in A[I . . . N ].
A facsimile of the original specification of the partition procedure is included in Figure 10. It uses a
randomly selected element in A[M . . .N ] to serve as the pivot for partitioning the array.

Conquer: The two recursive calls to quicksort operate on sub-arrays A[M . . . J ] and A[I . . . N ]. The re-
cursion terminates when M < N is false i.e., when M ≥ N . There is no combining to be done after
the two sub-arrays have been sorted, since they can just be left in place to obtain a sorted version of
A[M . . .N ].

Listing 9 shows a sequential implementation of the quicksort() and partition() procedures from Figures 9 and
10. The partition() procedures uses the point data type to return the I and J values in a single object, and
also replaces the go to statements by while, continue, and break statements. This code initializes I = M
and J = N . Line 16 repeatedly increments I while scanning elements from left-to-right (moving “up”) that
are ≤ the pivot value. Similarly, line 17 repeatedly decrements J while scanning elements from right-to-left
(moving “down”) that are ≥ the pivot value. After this, an exchange is performed, and the while loop in
line 15 is repeated as needed. If one of the conditions in line 20 or line 21 is satisfied, control exits from the
while loop to the return statement in line 23.

The divide-and-conquer structure of the quicksort procedure naturally leads to parallel execution of the
recursive calls, akin to the recursive parallel algorithm for the Array Sum problem that you studied earlier.
In particular, the two recursive calls to quicksort can be executed in parallel with each other as shown in
Listing 10.

What is the parallel execution time complexity of the program in Listing 10? For simplicity, let us assume
perfect pivoting in this analysis i.e., that each call to partition() is able to divide the input array into two
sub-arrays of equal size. In that case, the first call to partition() takes O(n) time, the next two calls execute
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Description of procedure partition(A,M,N,I,J) from [17]:

Figure 10: Algorithm 63: Partition (source: [17])
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1 stat ic void qu i ck so r t ( int [ ] A, int M, int N) {
2 i f (M < N) {
3 point p = pa r t i t i o n (A, M, N) ; int I=p . get ( 0 ) ; int J=p . get ( 1 ) ;
4 qu i ck so r t (A, M, J ) ;
5 qu i ck so r t (A, I , N) ;
6 }
7 } // qu i ck so r t
8
9 stat ic point pa r t i t i o n ( int [ ] A, int M, int N) {

10 int I , J ;
11 Random rand = new Random ( ) ;
12 // Assign p ivot to random in t e g e r in M. .N
13 int pivot = M + rand . next Int (N−M+1);
14 I = M; J = N;
15 while ( true ) {
16 /∗ up ∗/ while ( I<= N && A[ I ] <= A[ p ivot ] ) I++; i f ( I > N) I = N;
17 /∗ down ∗/ while (J>= M && A[ J ] >= A[ p ivot ] ) J−−; i f ( J < M) J = M;
18 /∗ change ∗/
19 i f ( I < J ) { exchange (A, I , J ) ; I++; J−−; continue ; }
20 else i f ( I < pivot ) { exchange (A, I , p ivot ) ; I++; break ; }
21 else i f ( p ivot < J ) { exchange (A, pivot , J ) ; J−−; break ; }
22 else break ;
23 } // whi l e
24 return [ I , J ] ;
25 } // p a r t i t i o n
26
27 stat ic void exchange ( int [ ] A, int x , int y ) {
28 int temp = A[ x ] ; A[ x ] = A[ y ] ; A[ y ] = temp ;
29 }

Listing 9: procedure partition() from [17]
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1 stat ic void qu i ck so r t ( int [ ] A, int M, int N) {
2 i f (M < N) {
3 point p = pa r t i t i o n (A, M, N) ; int I=p . get ( 0 ) ; int J=p . get ( 1 ) ;
4 async qu i ck so r t (A, M, J ) ;
5 async qu i ck so r t (A, I , N) ;
6 }
7 } // qu i ck so r t

Listing 10: Parallelization of recursive calls in procedure quicksort() from [18]

WORK(n) = O(n log n) 
CPL(n) = O(n) + O(n/2) + O(n/4) + … = O(n) 

partition 
(size = n) 

partition 
(size=n/2) 

partition 
(size=n/2) 

part 
(n/4) 

part 
(n/4) 

part 
(n/4) 

part 
(n/4) 

O(log n) depth of calls to partition() 

Figure 11: Computation Graph for Approach 1

in parallel and take O(n/2) time each, the next four calls execute in parallel and take O(n/4) time each, and
so on. Thus, the critical path length for this algorithm is CPL(n) = O(n) +O(n/2) +O(n/4) + . . . = O(n),
and the total computation performed by the algorithm is WORK(n) = O(n log n). The computation graph
structure in Figure 11 illustrates the derivation of WORK(n) and CPL(n) for Approach 1. With O(n)
processors, the best speedup that we can expect from this algorithm, even with an unbounded number of
processors, is WORK(n)/CPL(n) = O(log n), which is highly limiting.

1.6.2 Parallelizing Quicksort: Approach 2

We studied Approach 1 to parallelizing Quicksort in Section 1.6, by using async statements to parallelize
recursive calls. An alternate approach is to leave the calls to quicksort() unchanged and instead focus on
parallelizing the computation within each call to partition(). This can be very challenging if we use the
algorithm in Listing 9 as a starting point, since that algorithm performs sequential incremental updates to
the array using calls to exchange(). Instead, we can exploit parallelism by making a copy of the sub-array
in a new location, identifying elements that are <, =, or > the pivot value, and then packing elements from
the copy back into the original sub-array as shown in Listing 11.

The program in Listing 11 has more detail than a high-level algorithmic description, but it is informative to
see what computations are necessary to perform this kind of parallelization. The forall statement in lines 8–
13 computes in parallel the values of lt[k], eq[k], and gt[k], each of which is set to 0 or 1 depending
on whether A[M+k] < A[M+pivot], A[M+k] == A[M+pivot] or A[M+k] > A[M+pivot] respectively. The
forall also copies sub-array A[M . . .N ] into buffer[0 . . . N −M + 1]. We can use the parallel prefix sum
algorithm described below in Section 1.6.4 to obtain a parallel implementation of the computePrefixSums()
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1 stat ic point p a r t i t i o n ( int [ ] A, int M, int N) {
2 int I , J ;
3 f ina l int pivot = M + new java . u t i l .Random ( ) . next Int (N−M+1);
4 f ina l int [ ] b u f f e r = new int [N−M+1];
5 f ina l int [ ] l t = new int [N−M+1];
6 f ina l int [ ] gt = new int [N−M+1];
7 f ina l int [ ] eq = new int [N−M+1];
8 f o ra l l ( po int [ k ] : [ 0 :N−M] ) {
9 l t [ k ] = (A[M+k ] < A[ p ivot ] ? 1 : 0 ) ;

10 eq [ k ] = (A[M+k ] == A[ p ivot ] ? 1 : 0 ) ;
11 gt [ k ] = (A[M+k ] > A[ p ivot ] ? 1 : 0 ) ;
12 bu f f e r [ k ] = A[M+k ] ;
13 }
14 f ina l int l tCount = computePrefixSums ( l t ) ; //update l t with p r e f i x sums
15 f ina l int eqCount = computePrefixSums ( eq ) ; //update eq with p r e f i x sums
16 f ina l int gtCount = computePrefixSums ( gt ) ; //update gt with p r e f i x sums
17 f o ra l l ( po int [ k ] : [ 0 :N−M] ) {
18 i f ( l t [ k]==1) A[M+l t [ k ]−1] = bu f f e r [ k ] ;
19 else i f ( eq [ k]==1) A[M+ltCount+eq [ k ]−1] = bu f f e r [ k ] ;
20 else A[M+ltCount+eqCount+gt [ k ]−1] = bu f f e r [ k ] ;
21 }
22 i f (M+ltCount == M) return [M+ltCount+eqCount , M+ltCount ] ;
23 else i f (M+ltCount == N) return [M+ltCount , M+ltCount −1] ;
24 else return [M+ltCount+eqCount , M+ltCount −1] ;
25 } // p a r t i t i o n

Listing 11: Parallel algorithm for procedure partition()

procedure called in lines 14, 15, and 16. We assume that the computePrefixSums() procedure replaces the
input int[] array by the prefix sums, and also returns an int value containing the total sum of the input
array (same as the last element in the prefix sum). The three prefix sums can also be combined into a single
scan operation when using segmented scans [3].

The forall loop in lines 17–21 permutes the elements in sub-array A[M . . .N ] so as to pack the sub-arrays
containing <, =, or > values relative to the pivot value. For the < case, line 18 copies buffer[k] into
A[M + lt[k]− 1]. For example, if only one element, A[M + k] satisfies this condition, then its prefix sum is
lt[k]=1, and line 18 assigns buffer[k] (which contains a copy of the original A[M + k]) to A[M]. Similarly,
for the = case, line 19 copies buffer[k] into A[M + ltCount + eq[k] − 1], and for the > case, line 20 copies
buffer[k] into A[M + ltCount+ eqCount+ gt[k]− 1]. Finally, the procedure returns [I, J ] based on the three
cases in lines 22, 23, and 24.

What is the parallel execution time complexity of this implementation of partition()? The total computation
performed is WORKpartition(n) = O(n), and the critical path length is CPLpartition(n) = O(log n) due

to the calls to computePrefixSums(). When combined with sequential calls to quicksort() as in [17], the
total work will be O(n) for the first call to partition(), 2×O(n/2) = O(n) for the 2 calls to partition() with
sub-arrays of size n/2, 4 × O(n/4) = O(n) for the 4 calls to partition() with sub-arrays of size n/4, and so
on. Thus, the total work is still WORK(n) = O(n log n) as in Approach 1. The critical path length can
be defined by the recurrence, CPL(n) = CPLpartition(n) + 2CPL(n/2) = log n + 2CPL(n/2), which can

be solved as CPL(n) = O(n). The computation graph structure in Figure 12 illustrates the derivation of
WORK(n) and CPL(n) for Approach 2. Thus, Approach 2 is as inefficient as Approach 1
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WORK(n) = O(n log n) 
CPL(n) = log(n) + 2 log(n/2) + 4 log(n/4) + … = O(n) 

partition 
(CPL = log n) 

partition 
(log n/2) 

part 
(log n/4) 

O(n) depth of partition() steps 

part 
(log n/4) 

… …

partition 
(log n/2) 

part 
(log n/4) 

part 
(log n/4) 

… …

Figure 12: Computation Graph for Approach 2

WORK(n) = O(n log n) 
CPL(n) = O(log n) + O(log n/2) + O(log n/4) + … = O(log2 n) 

partition 
(CPL = log n) 

partition 
(log n/2) 

partition 
(log n/2) 

part 
(log n/4) 

part 
(log n/4) 

part 
(log n/4) 

part 
(log n/4) 

O(log n) depth of calls to partition() 

Figure 13: Computation Graph for Approach 3

1.6.3 Parallelizing Quicksort: Approach 3

Approaches 1 and 2 to considered two complementary strategies for exploiting parallelism in quicksort() —
execution of the recursive calls as parallel tasks and exploitation of parallelism with a single call of partition()
respectively. Can we get the best of both worlds? What if we combine the parallel version of quicksort()
in Listing 10 with the parallel version of partition in Listing 11? The total computation remains the same,
WORK(n) = O(n log n). The computation graph structure is shown in Figure 13. It shows that the critical
path length is of the form log(n) + log(n/2) + log(n/4) + . . . = O(log2 n). The computation graph structure
in Figure 13 illustrates the derivation of WORK(n) and CPL(n) for Approach 3. Thus, the ideal parallelism
for this approach is WORK(n)/CPL(n) = (n log n)/ log2 n = O(n/(log n)), which is much better than that
of Approach 1 and Approach 2.

1.6.4 Parallel Prefix Sum

Let us now consider an extension of the Array Sum computation known as Prefix Sum. Prefix Sum com-
putations are a useful building block in a wide range of algorithms such as team standings, index of last
occurrence, lexical string comparison, and multi-precision arithmetic [3, 20].

The Prefix Sum problem can be stated as follows:

Given an input array A, compute an output array X as follows (where n = A.length):

X[i] =
∑

0≤j≤i

A[j] (1)
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1 // Copy input array A in to output array X
2 X = new int [A. l ength ] ; System . arraycopy (A, 0 ,X, 0 ,A. l ength ) ;
3 // Update array X with p r e f i x sums
4 for ( int i=1 ; i < X. length ; i++ ) X[ i ] += X[ i −1] ;

Listing 12: Sequential Prefix Sum

1 f in ish {
2 for ( int i=0 ; i < X. length ; i++ )
3 async X[ i ] = computeSum(A, 0 , i ) ;
4 }

Listing 13: Inefficient Parallel Prefix Sum program

Thus, each output element, X[i], is the sum of the prefix of array A consisting of elements A[0 . . . i]. This
computation is also referred to as a scan operation [3]. In general, the sum operation in Equation 1 can be
replaced by any binary associative operation.

What is the most efficient sequential algorithm for this problem? The problem statement in 1 may suggest
that O(n2) additions are required because X[0] requires 0 additions, X[1] requires 1 addition, X[2] requires
2 additions, and so on. However, it is easy to see that the sequential Prefix Sum program in Listing 12
computes the desired prefix sums in O(n) time.

The program in Listing 12 appears to be inherently sequential since output X[i] depends on output X[i−1].
How can we execute it in parallel? One approach could be to invoke the parallel Array Sum reduction
algorithm independently for each element in output array X as follows:

Recall that the parallel execution time for a single sum reduction operation was O(log n). Since all X[i]
elements in Listing 13 are computed in parallel, the parallel execution time for computing all output elements
is also O(log n). However, if you count each addition as taking 1 unit of time, then the total WORK performed
by the program in Listing 13 is

∑
0≤i<n i = O(n2). This means that you will need at least O(n2/(log n))

processors to perform the computation in O(log n) time, which is highly inefficient considering that the
sequential algorithm takes O(n) time. For optimality, you need a parallel algorithm that ideally takes
O(log n) time on O(n/(log n)) processors, like the parallel algorithm for Sum Reduction.

To develop such a parallel algorithm, the key observation is that each prefix sum consists of some number
of partial sums that can be obtained by grouping together the terms in the prefix into powers of 2. For
example, the expression for X[6] can be rewritten as

X[6] = A[0] +A[1] +A[2] +A[3] +A[4] +A[5] +A[6]

= (A[0] +A[1] +A[2] +A[3]) + (A[4] +A[5]) +A[6]

We then observe that there will be at most O(log n) terms in ( ) parentheses for each such X[i] and that
these terms can be reused across different X[i] values. Further, these terms are naturally computed as partial
sums in the parallel Sum Reduction algorithm that you learned earlier.

Figure 14 shows the “upward sweep” for the Parallel Prefix algorithm, following the reduction tree schema
studied earlier. The rules to be followed by each non-leaf node in this reduction tree are:

1. Receive values from left child and right child.

2. Store the left child’s value in the node’s “box”. The left child’s value is the sum of all array elements
that are descendants of the left child, and can be reused as a common term in the partial sums for
elements that are descendants of the right child.
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Upward sweep!
1.  Receive values from children!
2.  Store left value in box!
3.  Send left+right value to parent!

15!

2!

Input array, A:!

Figure 14: Upward sweep for Parallel Prefix algorithm

3. Compute the sum of the left child’s and right child’s values, and send that value up to the parent.

For the example in Figure 14, the input array is [3, 1, 2, 0, 4, 1, 1, 3]. If you look at the shaded box in the
figure, it receives the values 3 and 1 from its children, and propagates 3 + 1 = 4 to its parent. In addition,
it stores 3 in the box. All other boxes are filled in the same way. The critical path length for this sweep
is the height of the reduction tree, which is O(log n). This sweep can be performed in O(log n) time using
(n/(log n)) processors, as discussed earlier.

Figure 15 shows the “downward sweep” necessary to complete the prefix sum calculation. The rules to be
followed for each box are:

1. Receive value from its parent. This value contains the sum of the array elements located to the left of
the subtree rooted at the current box. Thus, the root box receives a zero (identity) value to start with.

2. Send value received from its parent to its left child, since its left child’s subtree has the same prefix as
it does.

3. Compute the sum of the value receive from its parent and the value stored in its box from the upward
sweep, and send that value to its right child. Recall that the value stored in its box is the sum of the
elements belong to its left child’s subtree. By adding these two values, we obtain the sum of the array
elements located to the left of the subtree rooted at the right child.

After the downward sweep has completed, each leaf will contain the sum of the array element to its left
(also known as the pre-scan). To compute the prefix sum, all that remains to be done is to add the pre-scan
value to the array element value at that position, which can be performed in O(1) time in parallel on O(n)
processors or O(log n) time in parallel on O(n/(log n) processors.

If you look at the shaded box in Figure 15, it receives the value 6 from its parent which is the sum of all the
elements to the left of the subtree rooted at the shaded box (see input array in Figure 14). This value of 6
is propagated to the left child, whereas the value of 6 + 5 = 11 is propagated to the right child. As with the
upward sweep, the downward sweep can be performed in O(log n) time using (n/(log n)) processors.
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Downward sweep!
1.  Receive value from parent (root receives 0)!
2.  Send parentʼs value to left child!
3.  Send parent+box value to right child!
Add X[i] to get prefix sum!

= Prefix sum!
including A[i]!

+ A[i]!

Prefix sum!
excluding A[i]!

Figure 15: Downward sweep for Parallel Prefix algorithm
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2 Functional Parallelism and Determinism

2.1 Future Tasks and Functional Parallelism

2.1.1 Tasks with Return Values

The async construct introduced in previous sections provided the ability to execute any statement as a
parallel task, and the finish construct provided a mechanism to await termination of all tasks created
within its scope. For example, an ancestor task, TA, uses a finish to ensure that it is safe to read values
computed by all descendant tasks, TD. These values are communicated from TD to TA via shared variables,
which in the case of HJ must be an instance field, static field, or array element.

However, there are many cases where it is desirable for a task to explicitly wait for the return value from a
specific single task, rather than all descendant tasks in a finish scope. To do so, it is necessary to extend
the regular async construct with return values, and to create a container (proxy) for the return value which
is done using future objects as follows:

• A variable of type future<T> is a reference to a future object i.e., a container for a return value of type
T from an async task. An important constraint in HJ is that all variables of type future<T> must be
declared with a final modifier, thereby ensuring that the value of the reference cannot change after
initialization. This constraint ensures that the synchronization associated with reading future values
cannot lead to a deadlock cycle.

• There are exactly two operations that can be performed on a variable, V1, of type future<T1>, assuming
that type T2 is a subtype of, or the same as, type T1:

1. Assignment — variable V1 can be assigned a reference to an async with return value type T2 as
described below, or V1 can be assigned the value of a variable V2 with type future<T2>.

2. Blocking read — the operation, V1.get(), waits until the async referred to by V1 has completed,
and then propagates the return value of the async to the caller as a value of type T1. This
semantics also avoids the possibility of a race condition on the return value.

• An async with a return value is called a future task, and can be defined by introducing two extensions
to regular async’s as follows:

1. The body of the async must start with a type declaration, async<T1>, in which the type of the
async’s return value, T1, immediately follows the async keyword.

2. The body itself must consist of a compound statement enclosed in { } braces, dynamically termi-
nating with a return statement. It is important to note that the purpose of this return statement
is to communicate the return value of the enclosing async and not the enclosing method.

Listing 14 revisits the two-way parallel array sum example discussed in Section 0.1, but using future tasks
instead of regular async’s. There are two variables of type future<int> in this example, sum1 and sum2,
and both are declared as final. Each future task can potentially execute in parallel with it parent, just like
regular async’s. However, unlike regular async’s, there is no finish construct needed for this example since
the parent task T1, performs sum1.get() to wait for future task T2 and sum2.get() to wait for future task
T3.

In addition to waiting for completion, the get() operations are also used to access the return values of the
future tasks. This is an elegant capability because it obviates the need for shared fields as in the example
with regular async’s, and avoids the possibility of race conditions on sum1 and sum2. Notice the three
declarations for variables sum in lines 4, 9, and 14. Each occurrence of sum is local to a task, and there’s no
possibility of race conditions on local variables either. These properties have historically made future tasks
well suited to express parallelism in functional languages [16].
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1 // Parent Task T1 (main program )
2 // Compute sum1 ( lower h a l f ) and sum2 ( upper h a l f ) in p a r a l l e l
3 f ina l future<int> sum1 = async<int> { // Future Task T2
4 int sum = 0 ;
5 for ( int i=0 ; i < X. length /2 ; i++) sum += X[ i ] ;
6 return sum ;
7 } ; //NOTE: semico lon needed to terminate ass ignment to sum1
8 f ina l future<int> sum2 = async<int> { // Future Task T3
9 int sum = 0 ;

10 for ( int i=X. l ength /2 ; i < X. length ; i++) sum += X[ i ] ;
11 return sum ;
12 } ; //NOTE: semico lon needed to terminate ass ignment to sum2
13 //Task T1 waits f o r Tasks T2 and T3 to complete
14 int sum = sum1 . get ( ) + sum2 . get ( ) ;

Listing 14: Two-way Parallel ArraySum using Future Tasks

2.1.2 Computation Graph Extensions for Future Tasks

Future tasks can be accommodated very naturally in the Computation Graph (CG) abstraction introduced
in Section 1.2. The main CG extensions required to accommodate the get() operations are as follows:

• A get() operation is a new kind of continuation operation, since it can involve a blocking operation.
Thus, get() operations can only occur on the boundaries of steps. To fully realize this constraint,
it may be necessary to split a statement containing one or more get() operations into multiple sub-
statements such that a get() occurs in a sub-statement by itself. This splitting can always be performed
by following HJ’s expression evaluation rules, which are the same as those for Java.

• A spawn edge connects the parent task to a child future task, just as with regular async’s.

• When a future task, TF , terminates, a join edge is inserted from the last step in TF to the step in the
ancestor task that follows its Immediately Enclosing Finish (IEF) operation, as with regular async’s.
In addition, a join edge is also inserted from TF ’s last step to every step that follows a get() operation
on the future task. Note that new get() operations may be encountered even after TF has terminated.

To compute the computation graph for the example in Listing 14, we will need to split the statement in
line 14 into the following sub-statements:

14a int temp1 = sum1.get();

14b int temp2 = sum2.get();

14c int sum = temp1 + temp2;

The resulting CG is shown in Figure 16. Note that the end of each step in a future task has two outgoing
join edges in this example, one to the get() operation and one to the implicit end-finish operation in the
main program.

2.1.3 Why must Future References be declared as final?

In the previous section, we stated the rule that all variables containing references to future objects must be
declared as final. This means that the variable cannot be modified after initialization. To motivate why this
rule was added to HJ, consider the illegal program example in Listing 15. WARNING: this is an example of
bad parallel programming practice that is not permitted in HJ.

This program declares two static non-final future reference fields, f1 and f2, in lines 1 and 2 and initializes
them to null. The main() programs then creates two future tasks, T1 and T2, in lines 5 and 6 and assigns
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Stmts 
1, 2 

Stmt 
14a 

Stmt 
14b 

Stmt 
14c 

Start-
Finish 
(main) 

End-
Finish 
(main) 

Stmts 
3 -- 7 

Stmts 
8 -- 12 

Continue edge Join edge Spawn edge 

Figure 16: Computation Graph G for example HJ program in code:TwoParArraySumFuture, with state-
ment 14 split into statements 14a, 14b, 14c

them to f1 and f2 respectively. Task T1 uses a “spin loop” in line 10 to wait for f2 to become non-null, and
task T2 does the same in line 15 to wait for f1 to become non-null. After exiting the spin loop, each task
performs a get() operation on the other thereby attempting to create a deadlock cycle in the computation
graph. Fortunately, the rule that all variables containing references to future objects must be declared to be
final avoids this situation in HJ.

2.1.4 Future Tasks with a void return type

A key distinction made thus far between future tasks and regular async’s is that future tasks have return
values but regular async’s do not. However, HJ also offers a construct that represents a hybrid of these
two task variants, namely a future task, TV , with a void return type. This is analogous to Java methods
with void return types. In this case, a get() operation performed on TV has the effect of waiting for TV to
complete, but no return value is communicated from TV .

Figure 17 shows Computation Graph G3 that cannot be generated using only async and future constructs,
and Listing 16 shows the HJ code that can be used to generate G3 using future tasks. This code uses futures
with a void return type, and provides a systematic way of converting any CG into an HJ program.

2.2 Memoization

The basic idea of memoization is to remember results of function calls f(x) as follows:

1. Create a data structure that stores the set {(x1, y1 = f(x1)), (x2, y2 = f(x2)), . . .} for each call f(xi)
that returns yi.

2. Look up data structure when processing calls of the form f(x′) when x′ equals one of the xi inputs for
which f(xi) has already been computed.

The memoization pattern lends itself easily to parallelization using futures by modifying the memoized data
structure to store {(x1, y1 = future(f(x1))), (x2, y2 = future(f(x2))), . . .}. The lookup operation can then be
extended with a get() operation on the future value if a future has already been created for the result of a
given input.

2.3 Finish Accumulators

In this section, we introduce the programming interface and semantics of finish accumulators in HJ. Finish
accumulators support parallel reductions, which represent a common pattern for computing the aggregation
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1 stat ic future<int> f 1=null ;
2 stat ic future<int> f 2=null ;
3
4 stat ic void main ( St r ing [ ] a rgs ) {
5 f1 = async<int> {return a1 ( ) ; } ; // Task T1
6 f2 = async<int> {return a2 ( ) ; } ; // Task T2
7 }
8
9 int a1 ( ) {

10 while ( f 2 == null ) ; // sp in loop
11 return f 2 . get ( ) ; // T1 waits f o r T2
12 }
13
14 int a2 ( ) {
15 while ( f 1 == null ) ; // sp in loop
16 return f 1 . get ( ) ; // T2 waits f o r T1
17 }

Listing 15: Illegal Use of Future Tasks in HJ due to missing final declarations

A 

B C 

D E 

F 

Figure 17: Computation Graph G3

1 // NOTE: return statement i s op t i ona l when return type i s void
2 f ina l future<void> A = async<void> { . . . ; return ;}
3 f ina l future<void> B = async<void> { A. get ( ) ; . . . ; return ;}
4 f ina l future<void> C = async<void> { A. get ( ) ; . . . ; return ;}
5 f ina l future<void> D = async<void> { B. get ( ) ; C. get ( ) ; . . . ; return ;}
6 f ina l future<void> E = async<void> { C. get ( ) ; . . . ; return ;}
7 f ina l future<void> F = async<void> { D. get ( ) ; E . get ( ) ; . . . ; return ;}

Listing 16: HJ code to generate Computation Graph G3 from Figure 17
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// Reduction operators

enum Operator {SUM, PROD, MIN, MAX, CUSTOM}

// Predefined reduction

accum(Operator op, Class dataType); // Constructor

void accum.put(Number datum); // Remit a datum

void accum.put(int datum);

void accum.put(double datum);

Number accum.get(); // Retrieve the result

// User-defined reduction

interface reducible<T> {

void reduce(T arg); // Define reduction

T identity(); // Define identity

}

accum<T>(Operator op, Class dataType); // Constructor

void accum.put(T datum); // Remit a datum

T accum.customGet(); // Retrieve the result

Figure 18: accumulator API

of an associative and commutative operation, such as summation, across multiple pieces of data supplied by
parallel tasks. There are two logical operations, put, to remit a datum and get, to retrieve the result from
a well-defined synchronization (end-finish) point. Section 2.3.1 describes the details of these operations,
and Section 2.3.2 describes how user-defined reductions are supported in finish accumulators.

2.3.1 Accumulator Constructs

Figure 18 shows the finish accumulator programming interface. The operations that a task, Ti, can perform
on accumulator, ac, are defined as follows.

• new: When task Ti performs a “ac = new accumulator(op, dataType);” statement, it creates a
new accumulator, ac, on which Ti is registered as the owner task. Here, op is the reduction operator
that the accumulator will perform, and dataType is the type of the data upon which the accumulator
operates. Currently supported predefined reduction operators include SUM, PROD, MIN, and MAX; CUSTOM
is used to specify user-defined reductions.

• put: When task Ti performs an “ac.put(datum);” operation on accumulator ac, it sends datum to
ac for the accumulation, and the accumulated value becomes available at a later end-finish point. The
runtime system throws an exception if a put() operation is attempted by a task that is not the owner
and does not belong to a finish scope that is associated with the accumulator. When a task performs
multiple put() operations on the same accumulator, they are treated as separate contributions to the
reduction.

• get: When task Ti performs an “ac.get()” operation on accumulator ac with predefined reduction
operators, it obtains a Number object containing the accumulated result. Likewise “ac.customGet()”
on ac with a CUSTOM operator returns a user-defined T object with the accumulated result. When no
put is performed on the accumulator, get returns the identity element for the operator, e.g., 0 for SUM,
1 for PROD, MAX VALUE/MIN VALUE for MIN/MAX, and user-defined identity for CUSTOM.

• Summary of access rules: The owner task of accumulator ac is allowed to perform put/get op-
erations on ac and associate ac with any finish scope in the task. Non-owner tasks are allowed to
access ac only within finish scopes with which ac is associated. To ensure determinism, the accumu-
lated result only becomes visible at the end-finish synchronization point of an associated finish;
get operations within a finish scope return the same value as the result at the beginning of the
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ac = new accum(...);
async { ... ac.put(foo()); }  // T1
finish (ac) {
    async {  // T2
        finish {
            async {  // T3
                ac.put(bar());
            }
            ac.put(baz());
        }
        ac.put(qux());
    }
    ac.put(quux());
}
n = ac.get();

ac.put(...);

ac.put(...);

ac.put(...);

ac.put(...);

ac.get(); ac.put(...);ac.put(...);ac.put(...);

: async : end-finish sync

ac = new accum(...);

finish (ac) {

}

/* ERROR */

T0

T2

T3

T1

Figure 19: Finish accumulator example with three tasks that perform a correct reduction and one that
throws an exception

finish scope. Note that put operations performed by the owner outside associated finish scopes are
immediately reflected in any subsequent get operations since those results are deterministic.

In contrast to traditional reduction implementations, the put() and get() operations are separate, and
reduction results are not visible until the end-finish point.

To associate a finish statement with multiple accumulators, Towner can perform a special finish statement
of the form, “finish (ac1, ac2, · · · , acn)〈stmt〉”. Note that finish (ac) becomes a no-op if ac is already
associated with an outer finish scope.

Figure 19 shows an example where four tasks T0, T1, T2, and T3 access a finish accumulator ac. As described
earlier, the put operation by T1 throws an exception due to nondeterminism since it is not the owner and
was created outside the finish scope associated with accumulator ac. Note that the inner finish scope
has no impact on the reduction of ac since ac is associated only with the outer finish. All put operations
by T0, T2, and T3 are reflected in ac at the end-finish synchronization of the outer finish, and the result
is obtained by T0’s get operation.

2.3.2 User-defined Reductions

User-defined reductions are also supported in finish accumulators, and its usage consists of these three steps:
1) specify CUSTOM and reducible.class as the accumulator’s operator and type,
2) define a class that implements the reducible interface,
3) pass the implementing class to the accumulator as a type parameter.

Figure 20 shows an example of a user-defined reduction. Class Coord contains two double fields, x and y,
and the goal of the reduction is to find the furthest point from the origin among all the points submitted to
the accumulator. The reduce method computes the distance of a given point from the origin, and updates
x and y if arg has a further distance than the current point in the accumulator.

2.4 Map Reduce

Data structures based on key-value pairs are used by a wide range of data analysis algorithms, including
web search and statistical analyses. In Java, these data structures are often implemented as instances of the
Map interface. An important constraint imposed on sets of key-value pairs is that no key occurs more than
once, thereby ensuring that each key can map to at most one value. Thus, a mathematical abstraction of a
Map data structure is as a set of pairs, S = {(k1, v1), . . . , (kn, vn)}, such that each (ki, vi) pair consists of a
key, ki, and a value, vi and ki 6= kj for any i 6= j.

Many data analysis algorithm can be specified as sequences of map and reduce operations on sets of key-
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1: void foo() {

2: accum<Coord> ac = new accum<Coord>(Operation.CUSTOM,

3: reducible.class);

4: finish(ac) {

5: forasync (point [j] : [1:n]) {

6: while(check(j)) {

7: ac.put(getCoordinate(j));

8: } } }

9: Coord c = ac.customGet();

10: System.out.println("Furthest: " + c.x + ", " + c.y);

11: }

12:

13: class Coord implements reducible<Coord> {

14: public double x, y;

15: public Coord(double x0, double y0) {

16: x = x0; y = y0;

17: }

18: public Coord identity(); {

19: return new Coord(0.0, 0.0);

20: }

21: public void reduce(Coord arg) {

22: if (sq(x) + sq(y) < sq(arg.x) + sq(arg.y)) {

23: x = arg.x; y = arg.y;

24: } }

25: private double sq(double v) { return v * v; }

26: }

Figure 20: User-defined reduction example

value pairs. For a given key-value pair, (ki, vi), a map function f generates a sets of output key-value pairs,
f(ki, vi) = {(k1, v1), . . . , (km, vm)}. The kj keys can be different from the ki key in the input of the map
function. When applied to a set of key-value pairs, the map function results in the union of the output set
generated from each input key-value pair as follows:

f(S) =
⋃

(ki,vi)∈S

f(ki, vi)

f(S) is referred to as a set of intermediate key-value pairs because it will serve as an input for a reduce
operation, g. Note that it is possible for f(S) to contain multiple key-value pairs with the same key. The
reduce operation groups together intermediate key-value pairs, {(k, vj)} with the sam key k, and generates
a reduced key-value pair, (k, v), for each such k, using a reduce function g on all v′j values with the same
intermediate key k′. Therefore g(f(S)) is guaranteed to satisfy the unique-key property.

Listing 17 shows the pseudocode for one possible implementation of map-reduce operations using finish and
async primitives. The basic idea is to complete all operations in the map phase before any operation in the
reduce phase starts. Alternate implementations are possible that expose more parallelism.

As an example, Listing 18 shows how the WordCount problem can be solved using map and reduce operations
on sets of key-value pairs. All map operations in step a) (line 4) can execute in parallel with only local data
accesses, making the map step highly amenable to parallelization. Step b) (line 5) can involve a major
reshuffle of data as all key-value pairs with the same key are grouped (gathered) together. Finally, step c)
(line 6) performs a standard reduction algorithm for all values with the same key.
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1 f in ish { // map phase
2 for each ( ki , v i ) pa i r in input s e t S
3 async compute f ( ki , v i ) and append output to f (S ) ; // map operat i on
4 }
5 f in ish { // reduce phase
6 for each key k ’ in in t e rmed ia t e s e t f (S)
7 async { // reduce operat i on
8 temp = id en t i t y ;
9 f o r each value v ’ ’ such that ( k ’ , v ’ ’ ) i s in f (S) {

10 temp = g ( temp , v ’ ’ ) ;
11 }
12 append (k ’ , temp) to output set , g ( f (S ) ;
13 }
14 }

Listing 17: Pseudocode for one possible implementation of map-reduce operations using finish and async
primitives

1 Input : s e t o f words
2 Output : s e t o f (word , count ) pa i r s
3 Algorithm :
4 a ) For each input word W, emit (W, 1) as a key−value pa i r (map s tep ) .
5 b) Group toge the r a l l key−value pa i r s with the same key ( in t e rmed ia t e
6 key−value pa i r s ) .
7 c ) Perform a sum reduct i on on a l l va lue s with the same key ( reduce s tep ) .

Listing 18: Computing Wordcount using map and reduce operations on sets of key-value pairs
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1 // Sequent i a l v e r s i on
2 for ( p = f i r s t ; p != null ; p = p . next ) p . x = p . y + p . z ;
3 for ( p = f i r s t ; p != null ; p = p . next ) sum += p . x ;
4
5 // I n c o r r e c t p a r a l l e l v e r s i on
6 for ( p = f i r s t ; p != null ; p = p . next )
7 async p . x = p . y + p . z ;
8 for ( p = f i r s t ; p != null ; p = p . next )
9 sum += p . x ;

Listing 19: Sequential and incorrect parallel versions of example program

2.5 Data Races

2.5.1 What are Data Races?

The fundamental primitives for task creation (async) and termination (finish) that you have learned thus far
are very powerful, and can be used to create a wide range of parallel programs. You will now learn about a
pernicious source of errors in parallel programs called data races, and how to avoid them.

Consider the example program shown in Listing 19. The parallel version contains an error because the writes
to instances of p.x in line 7 can potentially execute in parallel with the reads of instances of p.x in line 9.
This can be confirmed by building a computation graph for the program and observing that there is no chain
of dependence edges from step instances of line 7 to step instances of line 9. As a result, it is unclear whether
a read in line 9 will receive an older value of p.x or the value written in line 7. This kind of situation, where
the outcome depends on the relative completion times of two events, is called a race condition. When the
race condition applies to read and write accesses on a shared location, it is called a data race. A shared
location must be a static field, instance field or array element, since it is not possible for interfering accesses
to occur in parallel on a local variable in a method.

Data races are a challenging source of errors in parallel programming, since it is usually impossible to
guarantee that all possible orderings of the accesses to a location will be encountered during program testing.
Regardless of how many tests you write, so long as there is one ordering that yields the correct answer it
is always possible that the correct ordering in encountered when testing your program and an incorrect
ordering is encountered when the program executes in a production setting. For example, while testing the
program, it is possible that the task scheduler executes all the async tasks in line 7 of Listing 19 before
executing the continuation starting at line 8. In this case, the program will appear to be correct during test,
but will have a latent error that could be manifest at any arbitrary time in the future.

Formally, a data race occurs on location L in a program execution with computation graph CG if there exist
steps S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is no path of dependence edges
from S1 to S2 or from S2 to S1 in CG, and

2. both S1 and S2 read or write L, and at least one of the accesses is a write.

Programs that are guaranteed to never exhibit a data race are said to to be data-race-free. It is also common
to refer to programs that may exhibit data races as “racy”.

There are a number of interesting observations that follow from the above definition of a data race:

1. Immutability property: there cannot be a data race on shared immutable data. Recall that shared data
in a parallel Habanero-Java program consists of static fields, instance fields, and array elements. An
immutable location, Li, is one that is only written during initialization, and can only be read after
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1 f in ish {
2 St r ing s1 = ”XYZ” ;
3 async { St r ing s2 = s1 . toLowerCase ( ) ; . . . }
4 System . out . p r i n t l n ( s1 ) ;
5 }

Listing 20: Example of immutable string operations in a parallel program

initialization. In this case, there cannot be a data race on Li because there will only be one step that
writes to Li in CG, and all steps that read from L must follow the write. This property applies by
definition to static and non-static final fields. It also applies to instances of any immutable class e.g.,
java.lang.String.

2. Single-task ownership property: there cannot be a data race on a location that is only read or written
by a single task. Let us say that step Si in CG owns location L if it performs a read or write access on
L. If step Si belongs to Task Tj , we can also say that Task Tj owns L when executing Si. (Later in
the course, it will be useful to distinguish between read ownership and write ownership.) Consider a
location L that is only owned by steps that belong to the same task, Tj . Since all steps in Task Tj must
be connected by continue edges in CG, all reads and writes to L must be ordered by the dependences
in CG. Therefore, no data race is possible on location L.

3. Ownership-transfer property: there cannot be a data race on a location if all steps that read or write
it are totally ordered in CG. The single-task-ownership property can be generalized to the case when
all steps that read or write a location L are totally ordered by dependences in CG, even if the steps
belong to different tasks i.e., for any two steps Si and Sj that read or write L, it must be the case
that there is a path of dependence edges from Si to Sj or from Sj to Si. In this case, no data race
is possible on location L. We can think of the ownership of L being “transferred” from one step to
another, even across task boundaries, as execution follows the path of dependence edges.

4. Local-variable ownership property: there cannot be a data race on a local variable. If L is a local
variable, it can only be written by the task in which it is declared (L’s owner). Though it may be read
by a descendant task, the “copy-in” semantics for local variables (Rule 2 in Listing 4 of Section 1.1.1)
ensures that the value of the local variable is copied on async creation thus ensuring that there is no
race condition between the read access in the descendant task and the write access in L’s owner.

2.5.2 Avoiding Data Races

The four observations in Section 2.5.1 directly lead to the identification of programming tips and best
practices to avoid data races. There is considerable effort under way right now in the research community
to provide programming language support for these best practices, but until they enter the mainstream it is
your responsibility as a programmer to follow these tips on avoiding data races:

1. Immutability tip: Use immutable objects and arrays as far as possible. Sometimes this may require
making copies of objects and arrays instead of just modifying a single field or array element. Depending
on the algorithm used, the overhead of copying could be acceptable or prohibitive. For example, copying
has a small constant factor impact in the Parallel Quicksort algorithm.

Consider the example program in Listing 20. The parent task initializes s1 to the string, "XYZ" in
line 2, creates a child task in line 3, and prints out s1 in line 4. Even though the child task invokes
the toLowerCase() method on s1 in line 3, there is no data race between line 3 and the parent task’s
print statement in line 4 because toLowerCase() returns a new copy of the string with the lower-case
conversion instead of attempting to update the original version.
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1 f in ish { // Task T1
2 int [ ] A = new int [ n ] ; // A i s owned by T1
3 // . . . i n i t i a l i z e array A . . .
4 // c r e a t e a copy o f array A in B
5 int [ ] B = new int [A. l ength ] ; System . arraycopy (A, 0 ,B, 0 ,A. l ength ) ;
6 async { // Task T2 now owns B
7 int sum = computeSum(B, 0 ,B. length −1); // Modi f i e s B
8 System . out . p r i n t l n ( ”sum = ” + sum ) ;
9 }

10 // . . . update Array A . . .
11 System . out . p r i n t l n ( Arrays . t oS t r i ng (A) ) ; // pr in ted by task T1
12 }

Listing 21: Example of single-task ownership

2. Single-task ownership tip: If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task. This will entail making copies when sharing the
object or array with other tasks. As in the Immutability tip, it depends on the algorithm whether the
copying overhead can be acceptable or prohibitive.

In the example in Listing 21, the parent Task T1 allocates and initializes array A in lines 2 and 3, and
creates an async child Task T2 to compute its sum in line 6. Task T2 calls the computeSum() method
that actually modifies its input array. To avoid a data race, Task T1 acts as the owner of array A and
creates a copy of A in array B in lines 4 and 5/ Task T2 becomes the owner of B, while Task T1 remains
the owner of A thereby ensuring that each array is owned by a single task.

3. Ownership-transfer tip: If an object or array needs to be written multiple times after initialization and
also accessed by multiple tasks, then try and ensure that all the steps that read or write a location L
in the object/array are totally ordered by dependences in CG. Ownership transfer is even necessary
to support single-task ownership. In Listing 21, since Task T1 initializes array B as a copy of array A,
T1 is the original owner of A. The ownership of B is then transferred from T1 to T2 when Task T2 is
created with the async statement.

4. Local-variable tip: You do not need to worry about data races on local variables, since they are not
possible. However, local variables in Java are restricted to contain primitive data types (such as int)
and references to objects and arrays. In the case of object/array references, be aware that there may
be a data race on the underlying object even if there is no data race on the local variable that refers
to (points to) the object.

You will learn additional mechanisms for avoiding data races later in the course, when you study the future,
phaser, accumulator, isolated and actor constructs in HJ.

2.6 Functional and Structural Determinism

A computation is said to be functionally deterministic with respect to its inputs if it always computes the same
answer, when given the same inputs. By default, any sequential computation is expected to be deterministic
with respect to its inputs; if the computation interacts with the environment (e.g., a GUI event such as
a mouse click, or a system call like System.nanoTime()) then the values returned by the environment are
also considered to be inputs to the computation. The presence of data races often leads to nondeterminism
because a parallel program with data races may exhibit different behaviors for the same input, depending
on the relative scheduling and timing of memory accesses involved in a data race.

In general, the absence of data races is not sufficient to guarantee determinism. However, the parallel
constructs introduced in this module (“Module 1: Deterministic Shared-Memory Parallelism”) were carefully
selected to ensure the following Structural Determinism Property:
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1 p . x = 0 ; q = p ;
2 async p . x = 1 ; // Task T1
3 async p . x = 2 ; // Task T2
4 async { // Task T3
5 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
6 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
7 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
8 }
9 async { // Task T4

10 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
11 System . out . p r i n t l n ( ”Second read = ” + p . x ) ;
12 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
13 }

Listing 22: Example of a parallel program with data races

If a parallel program is written using the constructs introduced in Module 1 and is guaranteed
to never exhibit a data race, then it must be deterministic with respect to its inputs. Further,
the final computation graph is also guaranteed to be the same for all executions of the program
with the same input.

Note that the determinism property states that all data-race-free programs written using the constructs
introduced in Module 1 are guaranteed to be deterministic, but it does not imply that all racy programs are
non-deterministic.

The determinism property is a powerful semantic guarantee since the constructs introduced in Module 1
span a wide range of parallel programming primitives that include async, finish, finish accumulators,
futures, data-driven tasks (async await), forall, barriers, phasers, and phaser accumulators. The notable
exceptions are critical sections, isolated statements, and actors, all of which will be covered in Module 2
(“Nondeterministic Shared-Memory Parallelism”).

The additional guarantee that the final computation graph will also be the same for all executions of the
program with the same input is the reason for referring to this property as “Structural Determinism”. This
additional guarantee has also been referred to as “determinacy” in past work.

2.6.1 Optional topic: Memory Models and assumptions that can be made in the presence of
Data Races

Since the current state-of-the-art lacks a fool-proof approach for avoiding data races, this section briefly
summarizes what assumptions can be made for parallel programs that may contain data races.

A memory consistency model, or memory model, is the part of a programming language specification that
defines what write values a read may see in the presence of data races. Consider the example program in
Listing 22. It exhibits multiple data races since location p.x can potentially be written in parallel by Tasks
T1 and T2 and read in parallel by Tasks T3 and T4. T3 and T4 each read and print the value of p.x three
times. (Note that q.x and p.x both refer to the same location.) It is the job of the memory model to specify
what outputs are legally permitted by the programming language.

There is a wide spectrum of memory models that have been proposed in the literature. We briefly summarize
three models for now, and defer discussion of a fourth model, the Java Memory Model, to later in the course:

1. Sequential Consistency: The Sequential Consistency (SC) memory model was introduced by Leslie
Lamport in 1979 [19] and builds on a simple but strong rule viz., all steps should observe writes to all
locations in the same order. Thus, the SC memory model will not permit Task T3 to print “0, 1, 2”
and Task T4 to print “0, 2, 1”.
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1 async { // Task T3
2 int p x = p . x ;
3 System . out . p r i n t l n ( ” F i r s t read = ” + p x ) ;
4 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
5 System . out . p r i n t l n ( ”Third read = ” + p x ) ;
6 }

Listing 23: Rewrite of Task T3 from Listing 22

While the SC model may be intuitive for expert system programmers who write operating systems and
multithreaded libraries such as java.util.concurrent, it can lead to non-obvious consequences for
mainstream application programmers. For example, suppose an application programmer decided to
rewrite the body of Task T3 as shown in Listing 23. The main change is to introduce a local variable
p x that captures the value of p.x in line 2, and replaces p.x by p x in lines 3 and 5. This rewrite
is perfectly legal for a sequential program, and should be legal for computations performed within a
sequential step. However, a consequence of this rewrite is that Task T3 may print “0, 1, 0” as output,
which would not be permitted by the SC model. Thus, an apparently legal code transformation within
a sequential step has changed the semantics of the parallel program under the SC model.

2. Location Consistency: The Location Consistency (LC) memory model [10] was introduced to provide
an alternate semantics to address the code transformation anomalies that follow from the SC model.
The LC rule states that a read of location L in step Si may receive the value from any Most Recent
Write (MRW) of L relative to Si in the CG. A MRW is a write operation that can potentially execute
in parallel with Si, or one that precedes Si by a chain of dependence edges such that there is no other
write of L on that chain. LC is a weaker model than SC because it permits all the outputs that SC
does, as well as additional outputs that are not permitted by SC. For the program in Listing 22, the
LC model permits Task T3 to print “0, 1, 2” and Task T4 to print “0, 2, 1” in the same execution,
and also permits Task T3 to print “0, 1, 0” in a different execution.

3. C++ Memory Model: The proposed memory model for the new C++0x standard [5] makes the fol-
lowing assumption about data races:

“We give no semantics to programs with data races. There are no benign C++ data races.”

A data race that cannot change a program’s output with respect to its inputs is said to be benign.
A special case of benign races is when all write accesses to a location L (including the initializing
write) write the same value to L. It is benign, because it does not matter how many writes have been
performed on L before a read occurs, since all writes update L with the same value.

Thus, the behavior of a program with data races is completely undefined in the C++ memory model.
While this approach may be acceptable for systems programming languages like C/C++, it is unac-
ceptable for type-safe languages like Java that rely on basic safety guarantees for pointers and memory
accesses.

Why should you care about these memory models if you write bug-free code without data races? Because
the code that you write may be used in conjunction with other code that causes your code to participate in
a data race. For example, if your job to provide a sequential method that implements the body of Task T3
in Listing 22, the program that uses your code may exhibit data races even though your code may be free
of bugs. In that case, you should be aware what the impact of data races may be on the code that you
have written, and whether or not a transformation such as the one in Listing 23 is legal. The type of the
shared location also impacts the assumptions that you make. On some systems, the guarantees for 64-bit
data types such as long and double are weaker than those for smaller data types such as int and Java
object references.
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