CS 188 Section 10: Decision Trees

| Decision Trees

In the recursive construction of decision trees, it sometimes happens that a mixed set of positive and negative
examples remains at a leaf node, even after all the attributes have been used. Suppose that we have p positive
examples and n negative examples.

function DECISION-TREE-LEARNING(examples, attributes, parent _eramples) returns
a tree

if ezamples is empty then return PLURALITY-VALUE(parent _ezamples)
else if all ezamples have the same classification then return the classification
else if aftributes is empty then return PLURALITY-VALUE(ezamples)
else
A +—argmax, ¢ geriputes IMPORTANCE(a, exzamples)
tree +— a new decision tree with root test A
for each value vy, of A do
exs—{e : e€ examples and e A = v}
subtree «— DECISION-TREE-LEARNING(exs, attributes — A, examples)
add a branch to tree with label (A = v.) and subtree subtree
return free

1. Show that the solution used by the decision tree learning algorithm, which picks the majority classification,
minimizes the absolute error over the set of examples at the leaf.
If « is returned, the absolute error is:

E=pl—a)+na=an—p)+p
=n when o = 1.
= p when a = 0.

Thus, the error is minimized by setting a = 1 if p > n and 0 otherwise.

2. Show that the class probability, p/(p + n) minimizes the sum of squared errors.

The sum of squared error is:
E=p(1—a)®+na?

Its derivative is:
dE/da = 2an — 2p(1 — a) = 2a(p +n) — 2p.

The derivative has a zero at o = p/(p + n).
Now, we can prove that this is a minimum by evaluating the second derivative, 2(p 4+ n), to see that the
point of interest is in fact a minimum of E, the sum of squared errors equation.

2 Lero Gain

Suppose that an attribute splits the set of examples F into subsets Ej and that each subset has py positive
examples and nj negative examples. Show that the attribute has zero gain when py/(px + 1) is the same for
all k.
The gain is defined to be:
B(p/(p+ 1)) — T2 (o + 1)/ (p + 1) B(we) (b +).
Since p = Xpy and n = Xny, if pi/(px + ng) is the same for all k, we must have py/(pr + nx) = p/(p + n) for
all k.
Plugging it back into our gain equation, we get:
B(p/(p+n)) = Ei_1 (px + 1)/ (p + 1) Bpr/ (o + 1))
= B(p/(p+n)) — (p+n)/(p+n)B(p/(p+n)).
=0

3 Information Cain

You are a geek who hates sports. Trying to look cool at a party, you join a discussion that you belive to be
about football and basketball. You gather information about the two main subjects of discussion, but still
cannot figure out what sports they play.

Sport Position Name Height | Weight | Age College
? Guard Charlie Ward | 6’02” 185 41 Florida State
? Defensive End | Julius Peppers | 6’077 283 32 | North Carolina

Fortunately, you have brought your CS 188 notes along, and will build some classifiers to deter-
mine which sport is being discussed.

You come across a pamphlet from the Atlantic Coast Conference Basketball Hall of Fame, as well as an Oakland
Raiders team roster, and create the following table:

Sport Position Name Height | Weight | Age College
Basketball Guard Michael Jordan 6°06” 195 49 | North Carolina
Basketball Guard Vince Carter 6°06” 215 35 | North Carolina
Basketball Guard Muggsy Bogues 503" 135 47 Wake Forest
Basketball Center Tim Duncan 6’117 260 35 Oklahoma

Football Center Vince Carter 6’02” 295 29 Oklahoma
Football Kicker Tim Duncan 6°00” 215 33 Oklahoma
Football Kicker | Sebastian Janikowski | 6’02” 250 33 Florida State
Football Guard Langston Walker 6’087 345 33 California

Central to decision trees is the concept of “splitting” on a variable.

1. To review the concept of “information gain”, calculate it for a split on the Sport variable.

Since the variable that we want to predict is Sport, we want to be caluclating the entropy with respect to
the variable Sport.

(a) i. Distribution before: 8 examples with (1/2,1/2). (here the first number in the tuple is P(basketball),
and the second number is P(football)).
log(2) + log(2))

ii. Entropy before: %(5 5
(b) i. Distribution after: 4 examples with (1, 0), 4 examples with (0, 1)
=0

ii. Entropy after: § <l09(1)> +3 (%)

1
So, the information gain is (1 — 0) = 1, which is the greatest possible.

2. Of course, in our situation this would not make sense, as Sport is the very variable we lack at test time.
Now calculate the information gain for the decision “stumps” (one-split trees) created by first splitting on
Position, Name, and College. Do any of these perfectly classify the training data? Does it make sense to
use Name as a variable? Why or why not?

Note that here we will be splitting on different variables but still need to look at the entropy of the
distribution of the variable we need to predict which is sport. So, the before case remains same as before.

(a) Position

i. Distribution after: 4 examples with (3/4, 1/4), 2 examples with (1/2, 1/2), 2 examples with (0,

1).
ii. Entropy after: % (loi(%g) + log4(4)) + % (l092(2) + ZOQQ(Q)) + % (%) = 0.66
(b) Name

i. Distribution after: 1 examples with (1, 0), 2 examples with (1/2, 1/2), 1 examples with (0, 1),
2 examples with (1/2, 1/2), 1 example with (0,1), 1 example with (0,1).
ii. Entropy after: 0.5
(c) College
i. Distribution after: 2 examples with (1, 0), 1 examples with (1, 0), 3 examples with (1/3, 2/3),
1 examples with (0, 1), 1 example with (0,1).
ii. Entropy after: 0.34

Note that none of these variables completely classifies the data.

Regarding using the Name as a feature to use in classifying data: since we expect people’s names to be
unique, using them as a feature in learning is akin to using the unique ID of each data point. That is to
say, it’s quite a bad idea—you will overfit to the training data.

3. Decision trees can represent any function of discrete attribute variables. How can we best cast continuous
variables (Height, Weight, and Age) into discrete variables?

Use an inequality relation, Attribute > a, where a is a split point chosen to give the highest information
gain. E.g., an initial split on Age > 34 will perfectly classify the training data.

4 Decision Graphs

A decision graph is a generalization of a decision tree that allows nodes (i.e., attributes used for splits) to have
multiple parents, rather than just a single parent. The resulting graph must still be acyclic. Now, consider the
XOR function of three binary input attributes, which produces the value 1 if and only if an odd number of the
three attributes has value 1.

1. Draw a minimal-sized decision tree for the three-input XOR function.

2. Draw a minimal-sized decision graph for the three-input XOR function.

