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PREFACE

The following material is addressed to readers who are already familiar with applied mathematics
at the advanced undergraduate level or preferably higher; and with some �eld, such as physics,

chemistry, biology, geology, medicine, economics, sociology, engineering, operations research, etc.,

where inference is needed.y A previous acquaintance with probability and statistics is not necessary;
indeed, a certain amount of innocence in this area may be desirable, because there will be less to

unlearn.
We are concerned with probability theory and all of its conventional mathematics, but now

viewed in a wider context than that of the standard textbooks. Every Chapter after the �rst has
\new" (i.e., not previously published) results that we think will be found interesting and useful.

Many of our applications lie outside the scope of conventional probability theory as currently
taught. But we think that the results will speak for themselves, and that something like the theory

expounded here will become the conventional probability theory of the future.

History: The present form of this work is the result of an evolutionary growth over many years. My

interest in probability theory was stimulated �rst by reading the work of Harold Je�reys (1939) and
realizing that his viewpoint makes all the problems of theoretical physics appear in a very di�erent

light. But then in quick succession discovery of the work of R. T. Cox (1946), C. E. Shannon (1948)
and G. P�olya (1954) opened up new worlds of thought, whose exploration has occupied my mind

for some forty years. In this much larger and permanent world of rational thinking in general, the

current problems of theoretical physics appeared as only details of temporary interest.
The actual writing started as notes for a series of lectures given at Stanford University in 1956,

expounding the then new and exciting work of George P�olya on \Mathematics and Plausible Rea-
soning". He dissected our intuitive \common sense" into a set of elementary qualitative desiderata

and showed that mathematicians had been using them all along to guide the early stages of discov-
ery, which necessarily precede the �nding of a rigorous proof. The results were much like those of

James Bernoulli's \Art of Conjecture" (1713), developed analytically by Laplace in the late 18'th
Century; but P�olya thought the resemblance to be only qualitative.

However, P�olya demonstrated this qualitative agreement in such complete, exhaustive detail
as to suggest that there must be more to it. Fortunately, the consistency theorems of R. T. Cox

were enough to clinch matters; when one added P�olya's qualitative conditions to them the result

was a proof that, if degrees of plausibility are represented by real numbers, then there is a uniquely
determined set of quantitative rules for conducting inference. That is, any other rules whose results
conict with them will necessarily violate an elementary { and nearly inescapable { desideratum of
rationality or consistency.

But the �nal result was just the standard rules of probability theory, given already by Bernoulli
and Laplace; so why all the fuss? The important new feature was that these rules were now seen as

uniquely valid principles of logic in general, making no reference to \chance" or \random variables";
so their range of application is vastly greater than had been supposed in the conventional probability

theory that was developed in the early twentieth Century. As a result, the imaginary distinction
between \probability theory" and \statistical inference" disappears, and the �eld achieves not only
logical unity and simplicity, but far greater technical power and exibility in applications.

In the writer's lectures, the emphasis was therefore on the quantitative formulation of P�olya's
viewpoint, so it could be used for general problems of scienti�c inference, almost all of which

y By \inference" we mean simply: deductive reasoning whenever enough information is at hand to permit

it; inductive or plausible reasoning when { as is almost invariably the case in real problems { the necessary

information is not available. But if a problem can be solved by deductive reasoning, probability theory is

not needed for it; thus our topic is the optimal processing of incomplete information.
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arise out of incomplete information rather than \randomness". Some personal reminiscences about
George P�olya and this start of the work are in Chapter 5.

But once the development of applications started, the work of Harold Je�reys, who had seen
so much of it intuitively and seemed to anticipate every problem I would encounter, became again

the central focus of attention. My debt to him is only partially indicated by the dedication of this
book to his memory. Further comments about his work and its inuence on mine are scattered

about in several Chapters.

In the years 1957{1970 the lectures were repeated, with steadily increasing content, at many

other Universities and research laboratories.z In this growth it became clear gradually that the

outstanding di�culties of conventional \statistical inference" are easily understood and overcome.
But the rules which now took their place were quite subtle conceptually, and it required some

deep thinking to see how to apply them correctly. Past di�culties which had led to rejection of
Laplace's work, were seen �nally as only misapplications, arising usually from failure to de�ne the

problem unambiguously or to appreciate the cogency of seemingly trivial side information, and easy
to correct once this is recognized. The various relations between our \extended logic" approach

and the usual \random variable" one appear in almost every Chapter, in many di�erent forms.

Eventually, the material grew to far more than could be presented in a short series of lec-

tures, and the work evolved out of the pedagogical phase; with the clearing up of old di�culties

accomplished, we found ourselves in possession of a powerful tool for dealing with new problems.
Since about 1970 the accretion has continued at the same pace, but fed instead by the research

activity of the writer and his colleagues. We hope that the �nal result has retained enough of its
hybrid origins to be usable either as a textbook or as a reference work; indeed, several generations

of students have carried away earlier versions of our notes, and in turn taught it to their students.

In view of the above, we repeat the sentence that Charles Darwin wrote in the Introduction to

his Origin of Species : \I hope that I may be excused for entering on these personal details, as I give
them to show that I have not been hasty in coming to a decision." But it might be thought that

work done thirty years ago would be obsolete today. Fortunately, the work of Je�reys, P�olya and

Cox was of a fundamental, timeless character whose truth does not change and whose importance
grows with time. Their perception about the nature of inference, which was merely curious thirty

years ago, is very important in a half{dozen di�erent areas of science today; and it will be crucially
important in all areas 100 years hence.

Foundations: From thirty years of experience with its applications in hundreds of real problems,

our views on the foundations of probability theory have evolved into something quite complex,
which cannot be described in any such simplistic terms as \pro{this" or \anti{that". For example
our system of probability could hardly, in style, philosophy, and purpose, be more di�erent from

that of Kolmogorov. What we consider to be fully half of probability theory as it is needed in
current applications { the principles for assigning probabilities by logical analysis of incomplete

information { is not present at all in the Kolmogorov system.

Yet when all is said and done we �nd ourselves, to our own surprise, in agreement with Kol-

mogorov and in disagreement with his critics, on nearly all technical issues. As noted in Appendix A,
each of his axioms turns out to be, for all practical purposes, derivable from the P�olya{Cox desider-

ata of rationality and consistency. In short, we regard our system of probability as not contradicting
Kolmogorov's; but rather seeking a deeper logical foundation that permits its extension in the di-
rections that are needed for modern applications. In this endeavor, many problems have been

solved, and those still unsolved appear where we should naturally expect them: in breaking into
new ground.

z Some of the material in the early Chapters was issued in 1958 by the Socony{Mobil Oil Company as

Number 4 in their series \Colloquium Lectures in Pure and Applied Science".
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As another example, it appears at �rst glance to everyone that we are in very close agreement
with the de Finetti system of probability. Indeed, the writer believed this for some time. Yet

when all is said and done we �nd, to our own surprise, that little more than a loose philosophical
agreement remains; on many technical issues we disagree strongly with de Finetti. It appears to

us that his way of treating in�nite sets has opened up a Pandora's box of useless and unnecessary
paradoxes; nonconglomerability and �nite additivity are examples discussed in Chapter 15.

In�nite set paradoxing has become a morbid infection that is today spreading in a way that
threatens the very life of probability theory, and requires immediate surgical removal. In our

system, after this surgery, such paradoxes are avoided automatically; they cannot arise from correct
application of our basic rules, because those rules admit only �nite sets and in�nite sets that arise

as well{de�ned and well{behaved limits of �nite sets. The paradoxing was caused by (1) jumping

directly into an in�nite set without specifying any limiting process to de�ne its properties; and
then (2) asking questions whose answers depend on how the limit was approached.

For example, the question: \What is the probability that an integer is even?" can have any
answer we please in (0, 1), depending on what limiting process is to de�ne the \set of all inte-

gers" (just as a conditionally convergent series can be made to converge to any number we please,
depending on the order in which we arrange the terms).

In our view, an in�nite set cannot be said to possess any \existence" and mathematical prop-
erties at all { at least, in probability theory { until we have speci�ed the limiting process that is

to generate it from a �nite set. In other words, we sail under the banner of Gauss, Kronecker, and

Poincar�e rather than Cantor, Hilbert, and Bourbaki. We hope that readers who are shocked by
this will study the indictment of Bourbakism by the mathematician Morris Kline (1980), and then

bear with us long enough to see the advantages of our approach. Examples appear in almost every
Chapter.

Comparisons: For many years there has been controversy over \frequentist" versus \Bayesian"
methods of inference, in which the writer has been an outspoken partisan on the Bayesian side.

The record of this up to 1981 is given in an earlier book (Jaynes, 1983). In these old works there

was a strong tendency, on both sides, to argue on the level of philosophy or ideology. We can
now hold ourselves somewhat aloof from this because, thanks to recent work, there is no longer

any need to appeal to such arguments. We are now in possession of proven theorems and masses
of worked{out numerical examples. As a result, the superiority of Bayesian methods is now a

thoroughly demonstrated fact in a hundred di�erent areas. One can argue with a philosophy; it
is not so easy to argue with a computer printout, which says to us: \Independently of all your

philosophy, here are the facts of actual performance." We point this out in some detail whenever
there is a substantial di�erence in the �nal results. Thus we continue to argue vigorously for the
Bayesian methods; but we ask the reader to note that our arguments now proceed by citing facts
rather than proclaiming a philosophical or ideological position.

However, neither the Bayesian nor the frequentist approach is universally applicable, so in

the present more general work we take a broader view of things. Our theme is simply: Probability
Theory as Extended Logic. The \new" perception amounts to the recognition that the mathematical
rules of probability theory are not merely rules for calculating frequencies of \random variables";
they are also the unique consistent rules for conducting inference (i.e. plausible reasoning) of any

kind, and we shall apply them in full generality to that end.

It is true that all \Bayesian" calculations are included automatically as particular cases of our

rules; but so are all \frequentist" calculations. Nevertheless, our basic rules are broader than either
of these, and in many applications our calculations do not �t into either category.

To explain the situation as we see it presently: The traditional \frequentist" methods which use

only sampling distributions are usable and useful in many particularly simple, idealized problems;
but they represent the most proscribed special cases of probability theory, because they presuppose
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conditions (independent repetitions of a \random experiment" but no relevant prior information)
that are hardly ever met in real problems. This approach is quite inadequate for the current needs

of science.

In addition, frequentist methods provide no technical means to eliminate nuisance parameters

or to take prior information into account, no way even to use all the information in the data when
su�cient or ancillary statistics do not exist. Lacking the necessary theoretical principles, they force

one to \choose a statistic" from intuition rather than from probability theory, and then to invent
ad hoc devices (such as unbiased estimators, con�dence intervals, tail{area signi�cance tests) not

contained in the rules of probability theory. Each of these is usable within a small domain for
which it was invented but, as Cox's theorems guarantee, such arbitrary devices always generate

inconsistencies or absurd results when applied to extreme cases; we shall see dozens of examples.

All of these defects are corrected by use of Bayesian methods, which are adequate for what

we might call \well{developed" problems of inference. As Harold Je�reys demonstrated, they
have a superb analytical apparatus, able to deal e�ortlessly with the technical problems on which

frequentist methods fail. They determine the optimal estimators and algorithms automatically
while taking into account prior information and making proper allowance for nuisance parameters;

and they do not break down { but continue to yield reasonable results { in extreme cases. Therefore
they enable us to solve problems of far greater complexity than can be discussed at all in frequentist

terms. One of our main purposes is to show how all this capability was contained already in the

simple product and sum rules of probability theory interpreted as extended logic, with no need
for { indeed, no room for { any ad hoc devices.

But before Bayesian methods can be used, a problem must be developed beyond the \ex-

ploratory phase" to the point where it has enough structure to determine all the needed apparatus

(a model, sample space, hypothesis space, prior probabilities, sampling distribution). Almost all
scienti�c problems pass through an initial exploratory phase in which we have need for inference,

but the frequentist assumptions are invalid and the Bayesian apparatus is not yet available. In-
deed, some of them never evolve out of the exploratory phase. Problems at this level call for more

primitive means of assigning probabilities directly out of our incomplete information.

For this purpose, the Principle of Maximum Entropy has at present the clearest theoretical

justi�cation and is the most highly developed computationally, with an analytical apparatus as
powerful and versatile as the Bayesian one. To apply it we must de�ne a sample space, but do not

need any model or sampling distribution. In e�ect, entropy maximization creates a model for us
out of our data, which proves to be optimal by so many di�erent criteria? that it is hard to imagine

circumstances where one would not want to use it in a problem where we have a sample space but
no model.

Bayesian and maximum entropy methods di�er in another respect. Both procedures yield
the optimal inferences from the information that went into them, but we may choose a model for
Bayesian analysis; this amounts to expressing some prior knowledge { or some working hypothesis {
about the phenomenon being observed. Usually such hypotheses extend beyond what is directly

observable in the data, and in that sense we might say that Bayesian methods are { or at least may

? These concern e�cient information handling; for example, (1) The model created is the simplest one

that captures all the information in the constraints (Chapter 11); (2) It is the unique model for which

the constraints would have been su�cient statistics (Chapter 8); (3) If viewed as constructing a sampling

distribution for subsequent Bayesian inference from new data D, the only property of the measurement

errors in D that are used in that subsequent inference are the ones about which that sampling distribution

contained some de�nite prior information (Chapter 7). Thus the formalismautomatically takes into account

all the information we have, but avoids assuming information that we do not have. This contrasts sharply

with orthodox methods, where one does not think in terms of information at all, and in general violates

both of these desiderata.
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be { speculative. If the extra hypotheses are true, then we expect that the Bayesian results will
improve on maximum entropy; if they are false, the Bayesian inferences will likely be worse.

On the other hand, maximum entropy is a nonspeculative procedure, in the sense that it
invokes no hypotheses beyond the sample space and the evidence that is in the available data.

Thus it predicts only observable facts (functions of future or past observations) rather than values
of parameters which may exist only in our imagination. It is just for that reason that maximum

entropy is the appropriate (safest) tool when we have very little knowledge beyond the raw data;
it protects us against drawing conclusions not warranted by the data. But when the information is

extremely vague it may be di�cult to de�ne any appropriate sample space, and one may wonder
whether still more primitive principles than Maximum Entropy can be found. There is room for

much new creative thought here.

For the present, there are many important and highly nontrivial applications where Maximum

Entropy is the only tool we need. The planned second volume of this work is to consider them

in detail; usually, they require more technical knowledge of the subject{matter area than do the
more general applications studied in this volume. All of presently known statistical mechanics, for

example, is included in this, as are the highly successful maximum entropy spectrum analysis and
image reconstruction algorithms in current use. However, we think that in the future the latter two

applications will evolve on into the Bayesian phase, as we become more aware of the appropriate
models and hypothesis spaces, which enable us to incorporate more prior information.

Mental Activity: As one would expect already from P�olya's examples, probability theory as

extended logic reproduces many aspects of human mental activity, sometimes in surprising and
even disturbing detail. In Chapter 5 we �nd our equations exhibiting the phenomenon of a person

who tells the truth and is not believed, even though the disbelievers are reasoning consistently. The

theory explains why and under what circumstances this will happen.

The equations also reproduce a more complicated phenomenon, divergence of opinions. One

might expect that open discussion of public issues would tend to bring about a general concensus.
On the contrary, we observe repeatedly that when some controversial issue has been discussed

vigorously for a few years, society becomes polarized into two opposite extreme camps; it is almost
impossible to �nd anyone who retains a moderate view. Probability theory as logic shows how two

persons, given the same information, may have their opinions driven in opposite directions by it,
and what must be done to avoid this.

In such respects, it is clear that probability theory is telling us something about the way our
own minds operate when we form intuitive judgments, of which we may not have been consciously

aware. Some may feel uncomfortable at these revelations; others may see in them useful tools for
psychological, sociological, or legal research.

What is `safe'? We are not concerned here only with abstract issues of mathematics and logic.
One of the main practical messages of this work is the great e�ect of prior information on the

conclusions that one should draw from a given data set. Currently much discussed issues such
as environmental hazards or the toxicity of a food additive, cannot be judged rationally if one

looks only at the current data and ignores the prior information that scientists have about the
phenomenon. As we demonstrate, this can lead us to greatly overestimate or underestimate the
danger.

A common error, when judging the e�ects of radioactivity or the toxicity of some substance,

is to assume a linear response model without threshold (that is, a dose rate below which there is
no ill e�ect). Presumably there is no threshold e�ect for cumulative poisons like heavy metal ions
(mercury, lead), which are eliminated only very slowly if at all. But for virtually every organic

substance (such as saccharin or cyclamates), the existence of a �nite metabolic rate means that
there must exist a �nite threshold dose rate, below which the substance is decomposed, eliminated,
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or chemically altered so rapidly that it has no ill e�ects. If this were not true, the human race
could never have survived to the present time, in view of all the things we have been eating.

Indeed, every mouthful of food you and I have ever taken contained many billions of kinds of
complex molecules whose structure and physiological e�ects have never been determined { and many

millions of which would be toxic or fatal in large doses. We cannot doubt that we are daily ingesting
thousands of substances that are far more dangerous than saccharin { but in amounts that are safe,

because they are far below the various thresholds of toxicity. There is an obvious resemblance to
the process of vaccination, in which an extremely small \microdose" of some potentially dangerous

substance causes the body to build up defenses against it, making it harmless. But at present there

is hardly any substance except some common drugs, for which we actually know the threshold.

Therefore, the goal of inference in this �eld should be to estimate not only the slope of the

response curve, but far more importantly , to decide whether there is evidence for a threshold;
and if so, to estimate its magnitude (the \maximum safe dose"). For example, to tell us that a

sugar substitute is dangerous in doses a thousand times greater than would ever be encountered in
practice, is hardly an argument against using the substitute; indeed, the fact that it is necessary

to go to kilodoses in order to detect any ill e�ects at all, is rather conclusive evidence, not of
the danger, but of the safety , of a tested substance. A similar overdose of sugar would be far

more dangerous, leading not to barely detectable harmful e�ects, but to sure, immediate death by
diabetic coma; yet nobody has proposed to ban the use of sugar in food.

Kilodose e�ects are irrelevant because we do not take kilodoses; in the case of a sugar substitute

the important question is: What are the threshold doses for toxicity of a sugar substitute and for

sugar, compared to the normal doses? If that of a sugar substitute is higher, then the rational

conclusion would be that the substitute is actually safer than sugar, as a food ingredient. To
analyze one's data in terms of a model which does not allow even the possibility of a threshold

e�ect, is to prejudge the issue in a way that can lead to false conclusions however good the data. If
we hope to detect any phenomenon, we must use a model that at least allows the possibility that

it may exist.

We emphasize this in the Preface because false conclusions of just this kind are now not only
causing major economic waste, but also creating unnecessary dangers to public health and safety.

Society has only �nite resources to deal with such problems, so any e�ort expended on imaginary
dangers means that real dangers are going unattended. Even worse, the error is incorrectible by

current data analysis procedures; a false premise built into a model which is never questioned,
cannot be removed by any amount of new data. Use of models which correctly represent the prior
information that scientists have about the mechanism at work can prevent such folly in the future.

But such considerations are not the only reasons why prior information is essential in inference;
the progress of science itself is at stake. To see this, note a corollary to the last paragraph; that
new data that we insist on analyzing in terms of old ideas (that is, old models which are not

questioned) cannot lead us out of the old ideas. However many data we record and analyze, we

may just keep repeating the same old errors, and missing the same crucially important things that
the experiment was competent to �nd. That is what ignoring prior information can do to us; no
amount of analyzing coin tossing data by a stochastic model could have led us to discovery of
Newtonian mechanics, which alone determines those data.

But old data, when seen in the light of new ideas, can give us an entirely new insight into
a phenomenon; we have an impressive recent example of this in the Bayesian spectrum analysis

of nuclear magnetic resonance data, which enables us to make accurate quantitative determina-
tions of phenomena which were not accessible to observation at all with the previously used data

analysis by fourier transforms. When a data set is mutilated (or, to use the common euphemism,
`�ltered') by processing according to false assumptions, important information in it may be de-
stroyed irreversibly. As some have recognized, this is happening constantly from orthodox methods
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of detrending or seasonal adjustment in Econometrics. But old data sets, if preserved unmutilated
by old assumptions, may have a new lease on life when our prior information advances.

Style of Presentation: In part A, expounding principles and elementary applications, most

Chapters start with several pages of verbal discussion of the nature of the problem. Here we
try to explain the constructive ways of looking at it, and the logical pitfalls responsible for past

errors. Only then do we turn to the mathematics, solving a few of the problems of the genre to the
point where the reader may carry it on by straightforward mathematical generalization. In part B,

expounding more advanced applications, we can concentrate from the start on the mathematics.

The writer has learned from much experience that this primary emphasis on the logic of the

problem, rather than the mathematics, is necessary in the early stages. For modern students, the
mathematics is the easy part; once a problem has been reduced to a de�nite mathematical exercise,

most students can solve it e�ortlessly and extend it endlessly, without further help from any book or
teacher. It is in the conceptual matters (how to make the initial connection between the real{world

problem and the abstract mathematics) that they are perplexed and unsure how to proceed.

Recent history demonstrates that anyone foolhardy enough to describe his own work as \rig-

orous" is headed for a fall. Therefore, we shall claim only that we do not knowingly give erroneous
arguments. We are conscious also of writing for a large and varied audience, for most of whom

clarity of meaning is more important than \rigor" in the narrow mathematical sense.

There are two more, even stronger reasons for placing our primary emphasis on logic and

clarity. Firstly, no argument is stronger than the premises that go into it, and as Harold Je�reys
noted, those who lay the greatest stress on mathematical rigor are just the ones who, lacking a sure

sense of the real world, tie their arguments to unrealistic premises and thus destroy their relevance.
Je�reys likened this to trying to strengthen a building by anchoring steel beams into plaster. An

argument which makes it clear intuitively why a result is correct, is actually more trustworthy
and more likely of a permanent place in science, than is one that makes a great overt show of

mathematical rigor unaccompanied by understanding.

Secondly, we have to recognize that there are no really trustworthy standards of rigor in a

mathematics that has embraced the theory of in�nite sets. Morris Kline (1980, p. 351) came close
to the Je�reys simile: \Should one design a bridge using theory involving in�nite sets or the axiom

of choice? Might not the bridge collapse?" The only real rigor we have today is in the operations
of elementary arithmetic on �nite sets of �nite integers, and our own bridge will be safest from

collapse if we keep this in mind.

Of course, it is essential that we follow this \�nite sets" policy whenever it matters for our

results; but we do not propose to become fanatical about it. In particular, the arts of computation
and approximation are on a di�erent level than that of basic principle; and so once a result is

derived from strict application of the rules, we allow ourselves to use any convenient analytical
methods for evaluation or approximation (such as replacing a sum by an integral) without feeling

obliged to show how to generate an uncountable set as the limit of a �nite one.

But we impose on ourselves a far stricter adherence to the mathematical rules of probability
theory than was ever exhibited in the \orthodox" statistical literature, in which authors repeatedly
invoke the aforementioned intuitive ad hoc devices to do, arbitrarily and imperfectly, what the

rules of probability theory as logic would have done for them uniquely and optimally. It is just this
strict adherence that enables us to avoid the arti�cial paradoxes and contradictions of orthodox
statistics, as described in Chapters 15 and 17.

Equally important, this policy often simpli�es the computations in two ways: (A) The problem
of determining the sampling distribution of a \statistic" is eliminated; the evidence of the data is

displayed fully in the likelihood function, which can be written down immediately. (B) One can

eliminate nuisance parameters at the beginning of a calculation, thus reducing the dimensionality
of a search algorithm. This can mean orders of magnitude reduction in computation over what
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would be needed with a least squares or maximum likelihood algorithm. The Bayesian computer
programs of Bretthorst (1988) demonstrate these advantages impressively, leading in some cases to

major improvements in the ability to extract information from data, over previously used methods.
But this has barely scratched the surface of what can be done with sophisticated Bayesian models.

We expect a great proliferation of this �eld in the near future.
A scientist who has learned how to use probability theory directly as extended logic, has a great

advantage in power and versatility over one who has learned only a collection of unrelated ad{hoc

devices. As the complexity of our problems increases, so does this relative advantage. Therefore

we think that in the future, workers in all the quantitative sciences will be obliged, as a matter of
practical necessity, to use probability theory in the manner expounded here. This trend is already

well under way in several �elds, ranging from econometrics to astronomy to magnetic resonance

spectroscopy; but to make progress in a new area it is necessary to develop a healthy disrespect for
tradition and authority, which have retarded progress throughout the 20'th Century.

Finally, some readers should be warned not to look for hidden subtleties of meaning which are
not present. We shall, of course, explain and use all the standard technical jargon of probability

and statistics { because that is our topic. But although our concern with the nature of logical
inference leads us to discuss many of the same issues, our language di�ers greatly from the stilted

jargon of logicians and philosophers. There are no linguistic tricks and there is no \meta{language"
gobbledygook; only plain English. We think that this will convey our message clearly enough to

anyone who seriously wants to understand it. In any event, we feel sure that no further clarity
would be achieved by taking the �rst few steps down that in�nite regress that starts with: \What

do you mean by `exists'?"
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CHAPTER 1

PLAUSIBLE REASONING

\The actual science of logic is conversant at present only with things either certain,

impossible, or entirely doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic for this world is the calculus of Probabilities, which takes

account of the magnitude of the probability which is, or ought to be, in a reasonable
man's mind." | James Clerk Maxwell (1850)

Suppose some dark night a policeman walks down a street, apparently deserted; but suddenly he

hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then

a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which

turns out to be full of expensive jewelry. The policeman doesn't hesitate at all in deciding that this

gentleman is dishonest. But by what reasoning process does he arrive at this conclusion? Let us

�rst take a leisurely look at the general nature of such problems.

Deductive and Plausible Reasoning

A moment's thought makes it clear that our policeman's conclusion was not a logical deduction

from the evidence; for there may have been a perfectly innocent explanation for everything. It

might be, for example, that this gentleman was the owner of the jewelry store and he was coming

home from a masquerade party, and didn't have the key with him. But just as he walked by

his store a passing truck threw a stone through the window; and he was only protecting his own

property.

Now while the policeman's reasoning process was not logical deduction, we will grant that it

had a certain degree of validity. The evidence did not make the gentleman's dishonesty certain,

but it did make it extremely plausible. This is an example of a kind of reasoning in which we have

all become more or less pro�cient, necessarily, long before studying mathematical theories. We are

hardly able to get through one waking hour without facing some situation (i.e., will it rain or won't

it?) where we do not have enough information to permit deductive reasoning; but still we must

decide immediately what to do.

But in spite of its familiarity, the formation of plausible conclusions is a very subtle process.

Although history records discussions of it extending over 24 Centuries, probably nobody has ever

produced an analysis of the process which anyone else �nds completely satisfactory. But in this work

we will be able to report some useful and encouraging new progress on them, in which conicting

intuitive judgments are replaced by de�nite theorems, and ad hoc procedures are replaced by

rules that are determined uniquely by some very elementary { and nearly inescapable { criteria of

rationality.

All discussions of these questions start by giving examples of the contrast between deduc-

tive reasoning and plausible reasoning. As was recognized already in the Organon of Aristotle

(4'th Century B.C.), deductive reasoning (apodeixis) can be analyzed ultimately into the repeated

application of two strong syllogisms:

If A is true, then B is true

A is true (1{1)

Therefore, B is true

and its inverse:
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If A is true, then B is true

B is false (1{2)

Therefore, A is false

This is the kind of reasoning we would like to use all the time; but as noted, in almost all the

situations confronting us we do not have the right kind of information to allow this kind of reasoning.

We fall back on weaker syllogisms (epagoge):

If A is true, then B is true

B is true (1{3)

Therefore, A becomes more plausible

The evidence does not prove that A is true, but veri�cation of one of its consequences does give us

more con�dence in A. For example, let

A � \It will start to rain by 10 AM at the latest."

B � \The sky will become cloudy before 10 AM."

Observing clouds at 9:45 AM does not give us a logical certainty that the rain will follow; nev-

ertheless our common sense, obeying the weak syllogism, may induce us to change our plans and

behave as if we believed that it will, if those clouds are su�ciently dark.

This example shows also that the major premise, \If A then B" expresses B only as a logical

consequence of A; and not necessarily a causal physical consequence, which could be e�ective only

at a later time. The rain at 10 AM is not the physical cause of the clouds at 9:45 AM. Nevertheless,

the proper logical connection is not in the uncertain causal direction (clouds) =) (rain), but rather

(rain) =) (clouds) which is certain, although noncausal.

We emphasize at the outset that we are concerned here with logical connections, because some

discussions and applications of inference have fallen into serious error through failure to see the

distinction between logical implication and physical causation. The distinction is analyzed in some

depth by H. A. Simon and N. Rescher (1966), who note that all attempts to interpret implication

as expressing physical causation founder on the lack of contraposition expressed by the second

syllogism (1{2). That is, if we tried to interpret the major premise as \A is the physical cause

of B", then we would hardly be able to accept that \not{B is the physical cause of not{A". In

Chapter 3 we shall see that attempts to interpret plausible inferences in terms of physical causation

fare no better.

Another weak syllogism, still using the same major premise, is

If A is true, then B is true

A is false (1{4)

Therefore, B becomes less plausible

In this case, the evidence does not prove that B is false; but one of the possible reasons for its

being true has been eliminated, and so we feel less con�dent about B. The reasoning of a scientist,

by which he accepts or rejects his theories, consists almost entirely of syllogisms of the second and

third kind.

Now the reasoning of our policeman was not even of the above types. It is best described by

a still weaker syllogism:
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If A is true, then B becomes more plausible

B is true (1{5)

Therefore, A becomes more plausible

But in spite of the apparent weakness of this argument, when stated abstractly in terms of A and

B, we recognize that the policeman's conclusion has a very strong convincing power. There is

something which makes us believe that in this particular case, his argument had almost the power

of deductive reasoning.

These examples show that the brain, in doing plausible reasoning, not only decides whether

something becomes more plausible or less plausible, but it evaluates the degree of plausibility in

some way. The plausibility of rain by 10 depends very much on the darkness of those clouds.

And the brain also makes use of old information as well as the speci�c new data of the problem;

in deciding what to do we try to recall our past experience with clouds and rain, and what the

weather{man predicted last night.

To illustrate that the policeman was also making use of the past experience of policemen in

general, we have only to change that experience. Suppose that events like these happened several

times every night to every policeman|and in every case the gentleman turned out to be completely

innocent. Very soon, policemen would learn to ignore such trivial things.

Thus, in our reasoning we depend very much on prior information to help us in evaluating

the degree of plausibility in a new problem. This reasoning process goes on unconsciously, almost

instantaneously, and we conceal how complicated it really is by calling it common sense.

The mathematician George P�olya (1945, 1954) wrote three books about plausible reasoning,

pointing out a wealth of interesting examples and showing that there are de�nite rules by which

we do plausible reasoning (although in his work they remain in qualitative form). The above weak

syllogisms appear in his third volume. The reader is strongly urged to consult P�olya's exposition,

which was the original source of many of the ideas underlying the present work. We show below

how P�olya's principles may be made quantitative, with resulting useful applications.

Evidently, the deductive reasoning described above has the property that we can go through

long chains of reasoning of the type (1{1) and (1{2) and the conclusions have just as much certainty

as the premises. With the other kinds of reasoning, (1{3) { (1{5), the reliability of the conclusion

attenuates if we go through several stages. But in their quantitative form we shall �nd that in many

cases our conclusions can still approach the certainty of deductive reasoning (as the example of the

policeman leads us to expect). P�olya showed that even a pure mathematician actually uses these

weaker forms of reasoning most of the time. Of course, when he publishes a new theorem, he will

try very hard to invent an argument which uses only the �rst kind; but the reasoning process which

led him to the theorem in the �rst place almost always involves one of the weaker forms (based,

for example, on following up conjectures suggested by analogies). The same idea is expressed in

a remark of S. Banach (quoted by S. Ulam, 1957): \Good mathematicians see analogies between

theorems; great mathematicians see analogies between analogies."

As a �rst orientation, then, let us note some very suggestive analogies to another �eld{which

is itself based, in the last analysis, on plausible reasoning.

Analogies with Physical Theories

In physics, we learn quickly that the world is too complicated for us to analyze it all at once. We

can make progress only if we dissect it into little pieces and study them separately. Sometimes,

we can invent a mathematical model which reproduces several features of one of these pieces, and

whenever this happens we feel that progress has been made. These models are called physical

theories. As knowledge advances, we are able to invent better and better models, which reproduce
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more and more features of the real world, more and more accurately. Nobody knows whether there

is some natural end to this process, or whether it will go on inde�nitely.

In trying to understand common sense, we shall take a similar course. We won't try to

understand it all at once, but we shall feel that progress has been made if we are able to construct

idealized mathematical models which reproduce a few of its features. We expect that any model

we are now able to construct will be replaced by more complete ones in the future, and we do not

know whether there is any natural end to this process.

The analogy with physical theories is deeper than a mere analogy of method. Often, the things

which are most familiar to us turn out to be the hardest to understand. Phenomena whose very

existence is unknown to the vast majority of the human race (such as the di�erence in ultraviolet

spectra of Iron and Nickel) can be explained in exhaustive mathematical detail|but all of modern

science is practically helpless when faced with the complications of such a commonplace fact as

growth of a blade of grass. Accordingly, we must not expect too much of our models; we must be

prepared to �nd that some of the most familiar features of mental activity may be ones for which

we have the greatest di�culty in constructing any adequate model.

There are many more analogies. In physics we are accustomed to �nd that any advance in

knowledge leads to consequences of great practical value, but of an unpredictable nature. Roent-

gen's discovery of x{rays led to important new possibilities of medical diagnosis; Maxwell's discovery

of one more term in the equation for curl H led to practically instantaneous communication all over

the earth.

Our mathematical models for common sense also exhibit this feature of practical usefulness.

Any successful model, even though it may reproduce only a few features of common sense, will

prove to be a powerful extension of common sense in some �eld of application. Within this �eld, it

enables us to solve problems of inference which are so involved in complicated detail that we would

never attempt to solve them without its help.

The Thinking Computer

Models have practical uses of a quite di�erent type. Many people are fond of saying, \They will

never make a machine to replace the human mind|it does many things which no machine could

ever do." A beautiful answer to this was given by J. von Neumann in a talk on computers given

in Princeton in 1948, which the writer was privileged to attend. In reply to the canonical question

from the audience [\But of course, a mere machine can't really think, can it?"], he said: \You insist

that there is something a machine cannot do. If you will tell me precisely what it is that a machine

cannot do, then I can always make a machine which will do just that !"

In principle, the only operations which a machine cannot perform for us are those which we

cannot describe in detail, or which could not be completed in a �nite number of steps. Of course,

some will conjure up images of G�odel incompleteness, undecidability, Turing machines which never

stop, etc. But to answer all such doubts we need only point to the existence of the human brain,

which does it. Just as von Neumann indicated, the only real limitations on making \machines

which think" are our own limitations in not knowing exactly what \thinking" consists of.

But in our study of common sense we shall be led to some very explicit ideas about the

mechanism of thinking. Every time we can construct a mathematical model which reproduces a

part of common sense by prescribing a de�nite set of operations, this shows us how to \build a

machine" (i.e., write a computer program) which operates on incomplete data and, by applying

quantitative versions of the above weak syllogisms, does plausible reasoning instead of deductive

reasoning.

Indeed, the development of such computer software for certain specialized problems of inference

is one of the most active and useful current trends in this �eld. One kind of problem thus dealt with
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might be: given a mass of data, comprising 10,000 separate observations, determine in the light

of these data and whatever prior information is at hand, the relative plausibilities of 100 di�erent

possible hypotheses about the causes at work.

Our unaided common sense might be adequate for deciding between two hypotheses whose

consequences are very di�erent; but for dealing with 100 hypotheses which are not very di�erent,

we would be helpless without a computer and a well{developed mathematical theory that shows

us how to program it. That is, what determines, in the policeman's syllogism (1{5), whether the

plausibility of A increases by a large amount, raising it almost to certainty; or only a negligibly

small amount, making the data B almost irrelevant? The object of the present work is to develop

the mathematical theory which answers such questions, in the greatest depth and generality now

possible.

While we expect a mathematical theory to be useful in programming computers, the idea of a

thinking computer is also helpful psychologically in developing the mathematical theory. The ques-

tion of the reasoning process used by actual human brains is charged with emotion and grotesque

misunderstandings. It is hardly possible to say anything about this without becoming involved

in debates over issues that are not only undecidable in our present state of knowledge, but are

irrelevant to our purpose here.

Obviously, the operation of real human brains is so complicated that we can make no pretense

of explaining its mysteries; and in any event we are not trying to explain, much less reproduce, all

the abberations and inconsistencies of human brains. That is an interesting and important subject;

but it is not the subject we are studying here. Our topic is the normative principles of logic; and

not the principles of psychology or neurophysiology.

To emphasize this, instead of asking, \How can we build a mathematical model of human

common sense?" let us ask, \How could we build a machine which would carry out useful plausible

reasoning, following clearly de�ned principles expressing an idealized common sense?"

Introducing the Robot

In order to direct attention to constructive things and away from controversial irrelevancies, we

shall invent an imaginary being. Its brain is to be designed by us, so that it reasons according to

certain de�nite rules. These rules will be deduced from simple desiderata which, it appears to us,

would be desirable in human brains; i.e., we think that a rational person, should he discover that

he was violating one of these desiderata, would wish to revise his thinking.

In principle, we are free to adopt any rules we please; that is our way of de�ning which robot

we shall study. Comparing its reasoning with yours, if you �nd no resemblance you are in turn free

to reject our robot and design a di�erent one more to your liking. But if you �nd a very strong

resemblance, and decide that you want and trust this robot to help you in your own problems of

inference, then that will be an accomplishment of the theory, not a premise.

Our robot is going to reason about propositions. As already indicated above, we shall denote

various propositions by italicized capital letters, fA, B, C, etc.g, and for the time being we must

require that any proposition used must have, to the robot, an unambiguous meaning and must be

of the simple, de�nite logical type that must be either true or false. That is, until otherwise stated

we shall be concerned only with two{valued logic, or Aristotelian logic. We do not require that the

truth or falsity of such an \Aristotelian proposition" be ascertainable by any feasible investigation;

indeed, our inability to do this is usually just the reason why we need the robot's help.

For example, the writer personally considers both of the following propositions to be true:

A � \Beethoven and Berlioz never met."

B � \Beethoven's music has a better sustained quality than that of
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Berlioz, although Berlioz at his best is the equal of anybody."

But proposition B is not a permissible one for our robot to think about at present, while proposition

A is, although it is unlikely that its truth or falsity could be de�nitely established today (their

meeting is a chronological possibility, since their lives overlapped by 24 years; my reason for doubting

it is the failure of Berlioz to mention any such meeting in his memoirs{on the other hand, neither

does he come out and say de�nitely that they did not meet). After our theory is developed, it will

be of interest to see whether the present restriction to Aristotelian propositions such as A can be

relaxed, so that the robot might help us also with more vague propositions like B (see Chapter 18

on the Ap{distribution).
y

Boolean Algebra

To state these ideas more formally, we introduce some notation of the usual symbolic logic, or

Boolean algebra, so called because George Boole (1854) introduced a notation similar to the fol-

lowing. Of course, the principles of deductive logic itself were well understood centuries before

Boole, and as we shall see presently, all the results that follow from Boolean algebra were contained

already as special cases in the rules of plausible inference given by Laplace (1812). The symbol

A B

called the logical product or the conjunction, denotes the proposition \both A and B are true."

Obviously, the order in which we state them does not matter; A B and B A say the same thing.

The expression

A+B

called the logical sum or disjunction, stands for \at least one of the propositions A, B is true" and

has the same meaning as B +A. These symbols are only a shorthand way of writing propositions;

and do not stand for numerical values.

Given two propositions A, B, it may happen that one is true if and only if the other is true;

we then say that they have the same truth value. This may be only a simple tautology (i.e., A

and B are verbal statements which obviously say the same thing), or it may be that only after

immense mathematical labors is it �nally proved that A is the necessary and su�cient condition

for B. From the standpoint of logic it does not matter; once it is established, by any means, that

A and B have the same truth value, then they are logically equivalent propositions, in the sense

that any evidence concerning the truth of one pertains equally well to the truth of the other, and

they have the same implications for any further reasoning.

Evidently, then, it must be the most primitive axiom of plausible reasoning that two propo-

sitions with the same truth{value are equally plausible. This might appear almost too trivial to

mention, were it not for the fact that Boole himself (loc. cit. p. 286) fell into error on this point,

by mistakenly identifying two propositions which were in fact di�erent{and then failing to see any

contradiction in their di�erent plausibilities. Three years later (Boole, 1857) he gave a revised the-

ory which supersedes that in his book; for further comments on this incident, see Keynes (1921),

pp. 167{168; Jaynes (1976), pp. 240{242.

In Boolean algebra, the equals sign is used to denote, not equal numerical value, but equal

truth{value: A = B, and the \equations" of Boolean algebra thus consist of assertions that the

y The question how one is to make a machine in some sense `cognizant' of the conceptual meaning that a

proposition like A has to humans, might seem very di�cult, and much of Arti�cial Intelligence is devoted

to inventing ad hoc devices to deal with this problem. However, we shall �nd in Chapter 4 that for us the

problem is almost nonexistent; our rules for plausible reasoning automatically provide the means to do the

mathematical equivalent of this.
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proposition on the left{hand side has the same truth{value as the one on the right{hand side. The

symbol \�" means, as usual, \equals by de�nition."

In denoting complicated propositions we use parentheses in the same way as in ordinary algebra,

to indicate the order in which propositions are to be combined (at times we shall use them also

merely for clarity of expression although they are not strictly necessary). In their absence we

observe the rules of algebraic hierarchy, familiar to those who use hand calculators: thus A B + C

denotes (A B) + C; and not A(B + C).

The denial of a proposition is indicated by a bar:

A � \A is false:" (1{6)

The relation between A; A is a reciprocal one:

A = \A is false:"

and it does not matter which proposition we denote by the barred, which by the unbarred, letter.

Note that some care is needed in the unambiguous use of the bar. For example, according to the

above conventions,

AB = \AB is false:"

A B = \Both A and B are false:"

These are quite di�erent propositions; in fact, AB is not the logical product A B, but the logical

sum: AB = A +B.

With these understandings, Boolean algebra is characterized by some rather trivial and obvious

basic identities, which express the properties of:

Idempotence :

Commutativity :

Associativity :

Distributivity :

Duality :

AA = A

A+A = A

AB = BA

A+ B = B +A

A(BC) = (AB)C = ABC

A+ (B + C) = (A+B) + C = A+B + C

A(B + C) = AB +AC

A+ (BC) = (A+B)(A + C)

If C = AB ; then C = A+ B

If D = A+ B ; then D = A B

(1{7)

but by their application one can prove any number of further relations, some highly nontrivial. For

example, we shall presently have use for the rather elementary \theorem:"

If B = AD then AB = B and BA = A: (1{8)

Implication. The proposition
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A) B (1{9)

to be read: \A implies B", does not assert that either A or B is true; it means only that A B is

false, or what is the same thing, (A+ B) is true. This can be written also as the logical equation

A = AB. That is, given (1{9), if A is true then B must be true; or, if B is false then A must be

false. This is just what is stated in the strong syllogisms (1{1) and (1{2).

On the other hand, if A is false, (1{9) says nothing about B: and if B is true, (1{9) says

nothing about A. But these are just the cases in which our weak syllogisms (1{3), (1{4) do say

something. In one respect, then, the term \weak syllogism" is misleading. The theory of plausible

reasoning based on them is not a \weakened" form of logic; it is an extension of logic with new

content not present at all in conventional deductive logic. It will become clear in the next Chapter

[Eqs. (2{51), (2{52)] that our rules include deductive logic as a special case.

A Tricky Point: Note carefully that in ordinary language one would take \A implies B" to

mean that B is logically deducible from A. But in formal logic, \A implies B" means only that the

propositions A and AB have the same truth value. In general, whether B is logically deducible from

A does not depend only on the propositions A and B; it depends on the totality of propositions

(A;A0; A00; � � � ) that we accept as true and which are therefore available to use in the deduction.

Devinatz (1968, p. 3) and Hamilton (1988, p. 5) give the truth table for the implication as a binary

operation, illustrating that A) B is false only if A is true and B is false; in all other cases A) B

is true!

This may seem startling at �rst glance; but note that indeed, if A and B are both true, then

A = AB and so A ) B is true; in formal logic every true statement implies every other true

statement. On the other hand, if A is false, then A = AB and A = AB are both true, so A ) B

and A) B are both true; a false proposition implies all propositions. If we tried to interpret this

as logical deducibility (i.e., both B and B are deducible from A), it would follow that every false

proposition is logically contradictory. Yet the proposition: \Beethoven outlived Berlioz" is false

but hardly logically contradictory (for Beethoven did outlive many people who were the same age

as Berlioz).

Obviously, merely knowing that propositions A and B are both true does not provide enough

information to decide whether either is logically deducible from the other, plus some unspeci�ed

\toolbox" of other propositions. The question of logical deducibility of one proposition from a set

of others arises in a crucial way in the G�odel theorem discussed at the end of Chapter 2. This

great di�erence in the meaning of the word \implies" in ordinary language and in formal logic is

a tricky point that can lead to serious error if it is not properly understood; it appears to us that

\implication" is an unfortunate choice of word and this is not su�ciently emphasized in conventional

expositions of logic.

Adequate Sets of Operations

We note some features of deductive logic which will be needed in the design of our robot. We have

de�ned four operations, or \connectives," by which, starting from two propositions A; B, other

propositions may be de�ned: the logical product, or conjunction A B, the logical sum or disjunction

A+ B, the implication A) B, and the negation A. By combining these operations repeatedly in

every possible way, one can generate any number of new propositions, such as

C � (A+B)(A+ AB) + AB(A +B) : (1{10)

Many questions then occur to us: How large is the class of new propositions thus generated? Is it

in�nite, or is there a �nite set that is closed under these operations? Can every proposition de�ned
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from A; B, be thus represented, or does this require further connectives beyond the above four? Or

are these four already overcomplete so that some might be dispensed with? What is the smallest

set of operations that is adequate to generate all such \logic functions" of A and B? If instead of

two starting propositions A, B we have an arbitrary number fA1; : : : ; Ang, is this set of operations

still adequate to generate all possible logic functions of fA1; : : : ; Ang?

All these questions are answered easily, with results useful for logic, probability theory, and

computer design. Broadly speaking, we are asking whether, starting from our present vantage

point, we can (1) increase the number of functions, (2) decrease the number of operations. The

�rst query is simpli�ed by noting that two propositions, although they may appear entirely di�erent

when written out in the manner (1{10), are not di�erent propositions from the standpoint of logic

if they have the same truth value. For example, it is left for the reader to verify that C in (1{10)

is logically the same statement as the implication C = (B ) A).

Since we are, at this stage, restricting our attention to Aristotelian propositions, any logic

function C = f(A;B) such as (1{10) has only two possible \values," true and false; and likewise

the \independent variables" A and B can take on only those two values.

At this point a logician might object to our notation, saying that the symbol A has been

de�ned as standing for some �xed proposition, whose truth cannot change; so if we wish to consider

logic functions, then instead of writing C = f(A;B) we should introduce new symbols and write

z = f(x; y) where x; y; z are \statement variables" for which various speci�c statements A;B;C

may be substituted. But if A stands for some �xed but unspeci�ed proposition, then it can still

be either true or false. We achieve the same exibility merely by the understanding that equations

like (1{10) which de�ne logic functions are to be true for all ways of de�ning A;B ; i.e., instead of

a statement variable we use a variable statement.

In relations of the form C = f(A;B), we are concerned with logic functions de�ned on a discrete

\space" S consisting of only 22 = 4 points; namely those at which A and B take on the \values"

fTT;TF;FT;FFg respectively; and at each point the function f(A;B) can take on independently

either of two values fT;Fg. There are, therefore, exactly 24 = 16 di�erent logic functions f(A;B);

and no more. An expression B = f(A1; : : : ; An) involving n propositions is a logic function on a

space S of M = 2n points; and there are exactly 2M such functions.

In the case n = 1, there are four logic functions ff1(A); : : : ; f4(A)g, which we can de�ne by

enumeration: listing all their possible values in a \truth{table:"

A T F

f1(A) T T

f2(A) T F

f3(A) F T

f4(A) F F

But it is obvious by inspection that these are just:

f1(A) = A +A

f2(A) = A

f3(A) = A

f4(A) = A A

so we prove by enumeration that the three operations: conjunction, disjunction, and negation are

adequate to generate all logic functions of a single proposition.
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For the case of general n, consider �rst the special functions each of which is true at one and

only one point of S. For n = 2 there are 2n = 4 such functions:

A; B TT TF FT FF

f1(A;B) T F F F

f2(A;B) F T F F

f3(A;B) F F T F

f4(A;B) F F F T

It is clear by inspection that these are just the four basic conjunctions:

f1(A;B) = A B

f2(A;B) = A B

f3(A;B) = A B

f4(A;B) = A B

(1{11)

Consider now any logic function which is true on certain speci�ed points of S; for example, f5(A;B)

and f6(A;B) de�ned by

A; B TT TF FT FF

f5(A;B) F T F T

f6(A;B) T F T T

We assert that each of these functions is the logical sum of the conjunctions (1{11) that are true

on the same points (this is not trivial; the reader should verify it in detail); thus

f5(A;B) = f2(A;B) + f4(A;B)

= A B +A B

= (A+A) B

= B

and likewise,

f6(A;B) = f1(A;B) + f3(A;B) + f4(A;B)

= A B + A B + A B

= B +A B

= A+B

That is, f6(A;B) is the implication f6(A;B) = (A ) B), with the truth table discussed above.

Any logic function f(A;B) that is true on at least one point of S can be constructed in this way

as a logical sum of the basic conjunctions (1{11). There are 24 � 1 = 15 such functions. For the

remaining function, which is always false, it su�ces to take the contradiction, f16(A;B) � A A.

This method (called \reduction to disjunctive normal form" in logic textbooks) will work for

any n. For example, in the case n = 5 there are 25 = 32 basic conjunctions

fABCDE; ABCDE; ABCDE; : : :; AB C DEg
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and 232 = 4; 294; 967; 296 di�erent logic functions fi(A;B;C;D;E), 4; 294; 967; 295 of which can be

written as logical sums of the basic conjunctions, leaving only the contradiction

f4294967296(A;B;C;D;E) = A A :

Thus one can verify by \construction in thought" that the three operations

fconjunction; disjunction; negationg; i :e:; fAND; OR; NOTg

su�ce to generate all possible logic functions; or more concisely, they form an adequate set.

But the duality property (1{7) shows that a smaller set will su�ce; for disjunction of A; B is

the same as denying that they are both false:

A+ B = (A B) (1{12)

Therefore, the two operations (AND, NOT) already constitute an adequate set for deductive logic.y

This fact will be essential in determining when we have an adequate set of rules for plausible

reasoning, in the next Chapter.

It is clear that we cannot now strike out either of these operations, leaving only the other; i.e.,

the operation \AND" cannot be reduced to negations; and negation cannot be accomplished by

any number of \AND" operations. But this still leaves open the possibility that both conjunction

and negation might be reducible to some third operation, not yet introduced; so that a single logic

operation would constitute an adequate set.

It comes as a pleasant surprise to �nd that there is not only one, but two such operations. The

operation \NAND" is de�ned as the negation of \AND":

A " B � AB = A+ B (1{13)

which we can read as \A NAND B". But then we have once,

A = A " A

AB = (A " B) " (A " B)

A+B = (A " A) " (B " B)

(1{14)

Therefore, every logic function can be constructed with NAND alone. Likewise, the operation NOR

de�ned by

A # B � A+ B = A B (1{15)

is also powerful enough to generate all logic functions:

A = A # A

A+B = (A # B) # (A # B)

AB = (A # A) # (B # B)

: (1{16)

One can take advantage of this in designing computer and logic circuits. A \logic gate" is a circuit

having, besides a common ground, two input terminals and one output. The voltage relative to

y For you to ponder: does it follow that these two commands are the only ones needed to write any

computer program?
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ground at any of these terminals can take on only two values; say +3 volts, or \up" representing

\true"; and zero volts or \down," representing \false." A NAND gate is thus one whose output is

up if and only if at least one of the inputs is down; or what is the same thing, down if and only if

both inputs are up; while for a NOR gate the output is up if and only if both inputs are down.

One of the standard components of logic circuits is the \quad NAND gate," an integrated

circuit containing four independent NAND gates on one semiconductor chip. Given a su�cient

number of these and no other circuit components, it is possible to generate any required logic

function by interconnecting them in various ways.

This short excursion into deductive logic is as far as we need go for our purposes. Further

developments are given in many textbooks; for example, a modern treatment of Aristotelian logic

is given by I. M. Copi (1978). For non{Aristotelian forms with special emphasis on G�odel incom-

pleteness, computability, decidability, Turing machines, etc., see A. G. Hamilton (1988).

We turn now to our extension of logic, which is to follow from the conditions discussed next.

We call them \desiderata" rather than \axioms" because they do not assert that anything is

\true" but only state what appear to be desirable goals. Whether these goals are attainable

without contradictions and whether they determine any unique extension of logic, are matters of

mathematical analysis, given in Chapter 2.

The Basic Desiderata

To each proposition about which it reasons, our robot must assign some degree of plausibility,

based on the evidence we have given it; and whenever it receives new evidence it must revise these

assignments to take that new evidence into account. In order that these plausibility assignments

can be stored and modi�ed in the circuits of its brain, they must be associated with some de�nite

physical quantity, such as voltage or pulse duration or a binary coded number, etc. { however our

engineers want to design the details. For present purposes this means that there will have to be

some kind of association between degrees of plausibility and real numbers:

(I) Degrees of Plausibility are represented by real numbers: (1{17)

Desideratum (I) is practically forced on us by the requirement that the robot's brain must operate

by the carrying out of some de�nite physical process. However, it will appear (Appendix A) that

it is also required theoretically; we do not see the possibility of any consistent theory without a

property that is equivalent functionally to Desideratum (I).

We adopt a natural but nonessential convention; that a greater plausibility shall correspond

to a greater number. It will be convenient to assume also a continuity property, which is hard to

state precisely at this stage; but to say it intuitively: an in�nitesimally greater plausibility ought

to correspond only to an in�nitesimally greater number.

The plausibility that the robot assigns to some proposition A will, in general, depend on

whether we told it that some other proposition B is true. Following the notation of Keynes (1921)

and Cox (1961) we indicate this by the symbol

AjB (1{18)

which we may call \the conditional plausibility that A is true, given that B is true" or just, \A

given B." It stands for some real number. Thus, for example,

AjBC
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(which we may read: \A given B C") represents the plausibility that A is true, given that both B

and C are true. Or,

A+ BjCD

represents the plausibility that at least one of the propositions A and B is true, given that both

C and D are true; and so on. We have decided to represent a greater plausibility by a greater

number, so

(AjB) > (CjB) (1{19)

says that, given B, A is more plausible than C. In this notation, while the symbol for plausibility is

just of the form AjB without parentheses, we often add parentheses for clarity of expression. Thus

(1{19) says the same thing as

AjB > CjB ;

but its meaning is clearer to the eye.

In the interest of avoiding impossible problems, we are not going to ask our robot to undergo the

agony of reasoning from impossible or mutually contradictory premises; there could be no \correct"

answer. Thus, we make no attempt to de�ne AjBC when B and C are mutually contradictory.

Whenever such a symbol appears, it is understood that B and C are compatible propositions.

Also, we do not want this robot to think in a way that is directly opposed to the way you and

I think. So we shall design it to reason in a way that is at least qualitatively like the way humans

try to reason, as described by the above weak syllogisms and a number of other similar ones.

Thus, if it has old information C which gets updated to C0 in such a way that the plausibility

of A is increased:

(AjC0) > (AjC)

but the plausibility of B given A is not changed:

(BjAC0) = (BjAC)

this can, of course, produce only an increase, never a decrease, in the plausibility that both A and

B are true:

(ABjC0) � (ABjC) (1{20)

and it must produce a decrease in the plausibility that A is false:

(AjC0) < (AjC) : (1{21)

This qualitative requirement simply gives the \sense of direction: in which the robot's reasoning is to

go; it says nothing about how much the plausibilities change, except that our continuity assumption

(which is also a condition for qualitative correspondence with common sense) now requires that if

AjC changes only in�nitesimally, it can induce only an in�nitesimal change in ABjC and AjC. The

speci�c ways in which we use these qualitative requirements will be given in the next Chapter, at

the point where it is seen why we need them. For the present we summarize them simply as:

(II) Qualitative Correspondence with common sense: (1{22)
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Finally, we want to give our robot another desirable property for which honest people strive without

always attaining; that it always reasons consistently. By this we mean just the three common

colloquial meanings of the word \consistent":

(IIIa)

(
If a conclusion can be reasoned out in more than one way ; then

every possible way must lead to the same result:

)
(1{23a)

(IIIb)

8>>><
>>>:

The robot always takes into account all of the evidence it has

relevant to a question: It does not arbitrarily ignore some of

the information; basing its conclusions only on what remains:

In other words; the robot is completely non � ideological:

9>>>=
>>>;

(1{23b)

(IIIc)

8>>>>>><
>>>>>>:

The robot always represents equivalent states of knowledge by

equivalent plausibility assignments: That is; if in two problems

the robot0s state of knowledge is the same (except perhaps

for the labelling of the propositions); then it must assign the

same plausibilities in both:

9>>>>>>=
>>>>>>;

(1{23c )

Desiderata (I), (II), (IIIa) are the basic \structural" requirements on the inner workings of our

robot's brain, while (IIIb), (IIIc) are \interface" conditions which show how the robot's behavior

should relate to the outer world.

At this point, most students are surprised to learn that our search for desiderata is at an end.

The above conditions, it turns out, uniquely determine the rules by which our robot must reason;

i.e., there is only one set of mathematical operations for manipulating plausibilities which has all

these properties. These rules are deduced in the next Chapter.

[At the end of most Chapters, we insert a Section of informal Comments in which are collected

various side remarks, background material, etc. The reader may skip them without losing the main

thread of the argument.]

COMMENTS

As politicians, advertisers, salesmen, and propagandists for various political, economic, moral,

religious, psychic, environmental, dietary, and artistic doctrinaire positions know only too well,

fallible human minds are easily tricked, by clever verbiage, into committing violations of the above

desiderata. We shall try to ensure that they do not succeed with our robot.

We emphasize another contrast between the robot and a human brain. By Desideratum I,

the robot's mental state about any proposition is to be represented by a real number. Now it

is clear that our attitude toward any given proposition may have more than one \coordinate."

You and I form simultaneous judgments not only as to whether it is plausible, but also whether

it is desirable, whether it is important, whether it is useful, whether it is interesting, whether it

is amusing, whether it is morally right, etc. If we assume that each of these judgments might be

represented by a number, then a fully adequate description of a human state of mind would be

represented by a vector in a space of a rather large number of dimensions.

Not all propositions require this. For example, the proposition, \The refractive index of water

is less than 1.3" generates no emotions; consequently the state of mind which it produces has very

few coordinates. On the other hand, the proposition, \Your mother{in{law just wrecked your new
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car" generates a state of mind with many coordinates. A moment's introspection will show that,

quite generally, the situations of everyday life are those involving many coordinates. It is just for

this reason, we suggest, that the most familiar examples of mental activity are often the most

di�cult to reproduce by a model.

We might speculate further. Perhaps we have here the reason why science and mathematics are

the most successful of human activities; they deal with propositions which produce the simplest of

all mental states. Such states would be the ones least perturbed by a given amount of imperfection

in the human mind.

Of course, for many purposes we would not want our robot to adopt any of these more \human"

features arising from the other coordinates. It is just the fact that computers do not get confused by

emotional factors, do not get bored with a lengthy problem, do not pursue hidden motives opposed

to ours, that makes them safer agents than men for carrying out certain tasks.

These remarks are interjected to point out that there is a large unexplored area of possible

generalizations and extensions of the theory to be developed here; perhaps this may inspire others

to try their hand at developing \multi{dimensional theories" of mental activity, which would more

and more resemble the behavior of actual human brains { not all of which is undesirable. Such a

theory, if successful, might have an importance beyond our present ability to imagine.y

For the present, however, we shall have to be content with a much more modest undertaking.

Is it possible to develop a consistent \one{dimensional" model of plausible reasoning? Evidently,

our problem will be simplest if we can manage to represent a degree of plausibility uniquely by a

single real number, and ignore the other \coordinates" just mentioned.

We stress that we are in no way asserting that degrees of plausibility in actual human minds

have a unique numerical measure. Our job is not to postulate { or indeed to conjecture about { any

such thing; it is to investigate whether it is possible, in our robot, to set up such a correspondence

without contradictions.

But to some it may appear that we have already assumed more than is necessary, thereby

putting gratuitous restrictions on the generality of our theory. Why must we represent degrees of

plausibility by real numbers? Would not a \comparative" theory based on a system of qualitative

ordering relations like (AjC) > (BjC) su�ce? This point is discussed further in Appendix A, where

we describe other approaches to probability theory and note that some attempts have been made

to develop comparative theories which it was thought would be logically simpler, or more general.

But this turned out not to be the case; so although it is quite possible to develop the foundations

in other ways than ours, the �nal results will not be di�erent.

Common Language vs. Formal Logic

We should note the distinction between the statements of formal logic and those of ordinary lan-

guage. It might be thought that the latter is only a less precise form of expression; but on exami-

nation of details the relation appears di�erent. It appears to us that ordinary language, carefully

used, need not be less precise than formal logic; but ordinary language is more complicated in its

rules and has consequently richer possibilities of expression than we allow ourselves in formal logic.

In particular, common language, being in constant use for other purposes than logic, has

developed subtle nuances { means of implying something without actually stating it { that are lost

y Indeed, some psychologists think that as few as �ve dimensions might su�ce to characterize a human

personality; that is that we all di�er only in having di�erent mixes of �ve basic personality traits which may

be genetically determined. But it seems to us that this must be grossly oversimpli�ed; identi�able chemical

factors continuously varying in both space and time (such as the distribution of glucose metabolism in the

brain) a�ect mental activity but cannot be represented faithfully in a space of only �ve dimensions. Yet it

may be that such a representation can capture enough of the truth to be useful for many purposes.
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on formal logic. Mr. A, to a�rm his objectivity, says, \I believe what I see." Mr. B retorts: \He

doesn't see what he doesn't believe." From the standpoint of formal logic, it appears that they have

said the same thing; yet from the standpoint of common language, those statements had the intent

and e�ect of conveying opposite meanings.

Here is a less trivial example, taken from a mathematics textbook. Let L be a straight line

in a plane, and S an in�nite set of points in that plane, each of which is projected onto L. Now

consider the statements:

(I) The projection of the limit is the limit of the projections.

(II) The limit of the projections is the projection of the limit.

These have the grammatical structures: \A is B" and \B is A", and so they might appear logically

equivalent. Yet in that textbook, (I) was held to be true, and (II) not true in general, on the

grounds that the limit of the projections may exist when the limit of the set does not.

As we see from this, in common language { even in mathematics textbooks { we have learned

to read subtle nuances of meaning into the exact phrasing, probably without realizing it until an

example like this is pointed out. We interpret \A is B" as asserting �rst of all, as a kind of major

premise, that A \exists"; and the rest of the statement is understood to be conditional on that

premise. Put di�erently, in common grammar the verb \is" implies a distinction between subject

and object, which the symbol \=" does not have in formal logic or in conventional mathematics.

[But in computer languages we encounter such statements as \J = J + 1" which everybody seems

to understand, but in which the \=" sign has now acquired that implied distinction after all.]

Another amusing example is the old adage: \Knowledge is Power", which is a very cogent

truth, both in human relations and in thermodynamics. An ad writer for a chemical trade journaly

fouled this up into: \Power is Knowledge", an absurd { indeed, obscene { falsity.

These examples remind us that the verb \is" has, like any other verb, a subject and a predicate;

but it is seldom noted that this verb has two entirely di�erent meanings. A person whose native

language is English may require some e�ort to see the di�erent meanings in the statements: \The

room is noisy" and \There is noise in the room." But in Turkish these meanings are rendered by

di�erent words, which makes the distinction so clear that a visitor who uses the wrong word will not

be understood. The latter statement is ontological, asserting the physical existence of something,

while the former is epistemological, expressing only the speaker's personal perception.

Common language { or at least, the English language { has an almost universal tendency to

disguise epistemological statements by putting them into a grammatical form which suggests to the

unwary an ontological statement. A major source of error in current probability theory arises from

an unthinking failure to perceive this. To interpret the �rst kind of statement in the ontological

sense is to assert that one's own private thoughts and sensations are realities existing externally in

Nature. We call this the \Mind Projection Fallacy", and note the trouble it causes many times in

what follows. But this trouble is hardly con�ned to probability theory; as soon as it is pointed out,

it becomes evident that much of the discourse of philosophers and Gestalt psychologists, and the

attempts of physicists to explain quantum theory, are reduced to nonsense by the author falling

repeatedly into the Mind Projection Fallacy.

These examples illustrate the care that is needed when we try to translate the complex state-

ments of common language into the simpler statements of formal logic. Of course, common language

is often less precise than we should want in formal logic. But everybody expects this and is on the

lookout for it, so it is less dangerous.

y LC{CG magazine, March 1988, p. 211
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It is too much to expect that our robot will grasp all the subtle nuances of common language,

which a human spends perhaps twenty years acquiring. In this respect, our robot will remain like

a small child { it interprets all statements literally and blurts out the truth without thought of

whom this may o�end.

It is unclear to the writer how di�cult { and even less clear how desirable { it would be to

design a newer model robot with the ability to recognize these �ner shades of meaning. Of course,

the question of principle is disposed of at once by the existence of the human brain which does this.

But in practice von Neumann's principle applies; a robot designed by us cannot do it until someone

develops a theory of \nuance recognition" which reduces the process to a de�nitely prescribed set

of operations. This we gladly leave to others.

In any event, our present model robot is quite literally real, because today it is almost univer-

sally true that any nontrivial probability evaluation is performed by a computer. The person who

programmed that computer was necessarily, whether or not he thought of it that way, designing

part of the brain of a robot according to some preconceived notion of how the robot should behave.

But very few of the computer programs now in use satisfy all our desiderata; indeed, most are

intuitive ad hoc procedures that were not chosen with any well{de�ned desiderata at all in mind.

Any such adhockery is presumably useful within some special area of application { that was the

criterion for choosing it { but as the proofs of Chapter 2 will show, any adhockery which conicts

with the rules of probability theory, must generate demonstrable inconsistencies when we try to

apply it beyond some restricted area. Our aim is to avoid this by developing the general principles

of inference once and for all, directly from the requirement of consistency, and in a form applicable

to any problem of plausible inference that is formulated in a su�ciently unambiguous way.

Nitpicking

The set of rules and symbols that we have called \Boolean Algebra" is sometimes called \The

Propositional Calculus". The term seems to be used only for the purpose of adding that we need

also another set of rules and symbols called \The Predicate Calculus". However, these new symbols

prove to be only abbreviations for short and familiar phrases. The \Universal Quanti�er" is only

an abbreviation for \for all"; the \existential quanti�er" is an abbreviation for \there is a". If

we merely write our statements in plain English, we are using automatically all of the predicate

calculus that we need for our purposes, and doing it more intelligibly.

The validity of second strong syllogism (two{valued logic) is sometimes questioned. However,

it appears that in current mathematics it is still considered valid reasoning to say that a supposed

theorem is disproved by exhibiting a counter{example, that a set of statements is considered in-

consistent if we can derive a contradiction from them, and that a proposition can be established

by Reductio ad Absurdum; deriving a contradiction from its denial. This is enough for us; we are

quite content to follow this long tradition.

Our feeling of security in this stance comes from the conviction that, while logic may move

forward in the future, it can hardly move backward. A new logic might lead to new results about

which Aristotelian logic has nothing to say; indeed, that is just what we are trying to create here.

But surely, if a new logic was found to conict with Aristotelian logic in an area where Aristotelian

logic is applicable, we would consider that a fatal objection to the new logic.

Therefore, to those who feel con�ned by two{valued deductive logic we can say only: \By all

means, investigate other possibilities if you wish to; and please let us know about it as soon as

you have found a new result that was not contained in two{valued logic or our extension of it,

and is useful in scienti�c inference." Actually, there are many di�erent and mutually inconsistent

multiple{valued logics already in the literature. But in Appendix A we adduce arguments which

suggest that they can have no useful content that is not already in two{valued logic; that is, that an



118 1: Nitpicking 118

n{valued logic applied to one set of propositions is either equivalent to a two{valued logic applied

to an enlarged set, or else it contains internal inconsistencies.

Our experience is consistent with this conjecture; in practice, multiple{valued logics seem to

be used, not to �nd new useful results, but rather in attempts to remove supposed di�culties

with two{valued logic, particularly in quantum theory, fuzzy sets, and Arti�cial Intelligence. But

on closer study, all such di�culties known to us have proved to be only examples of the Mind

Projection Fallacy, calling for direct revision of the concepts rather than a new logic.
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CHAPTER 2

THE QUANTITATIVE RULES

\Probability theory is nothing but common sense reduced to calculation."

| Laplace, 1819

We have now formulated our problem, and it is a matter of straightforward mathematics to work

out the consequences of our desiderata: stated broadly,

I. Representation of degrees of plausibility by real numbers

II. Qualitative Correspondence with common sense

III. Consistency.

The present Chapter is devoted entirely to deduction of the quantitative rules for inference which

follow from these. The resulting rules have a long, complicated, and astonishing history, full of

lessons for scienti�c methodology in general (see Comments at the end of several Chapters).

The Product Rule

We �rst seek a consistent rule relating the plausibility of the logical product AB to the plausibilities

of A and B separately. In particular, let us �nd ABjC. Since the reasoning is somewhat subtle,

we examine this from di�erent viewpoints.

As a �rst orientation, note that the process of deciding that AB is true can be broken down

into elementary decisions about A and B separately. The robot can

(1) Decide that B is true. (BjC)

(2) Having accepted B as true, decide that A is true. (AjBC)

Or, equally well,

(1') Decide that A is true. (AjC)

(2') Having accepted A as true, decide that B is true. (BjAC)

In each case we indicate above the plausibility corresponding to that step.

Now let us describe the �rst procedure in words. In order for AB to be a true proposition, it

is necessary that B is true. Thus the plausibility BjC should be involved. In addition, if B is true,

it is further necessary that A should be true; so the plausibility AjBC is also needed. But if B is

false, then of course AB is false independently of whatever one knows about A, as expressed by

AjBC; if the robot reasons �rst about B, then the plausibility of A will be relevant only if B is

true. Thus, if the robot has BjC and AjBC it will not need AjC. That would tell it nothing about

AB that it did not have already.

Similarly, AjB and BjA are not needed; whatever plausibility A or B might have in the absence

of information C could not be relevant to judgments of a case in which the robot knows that C

is true. For example, if the robot learns that the earth is round, then in judging questions about

cosmology today, it does not need to take into account the opinions it might have (i.e., the extra

possibilities that it would need to take into account) if it did not know that the earth is round.

Of course, since the logical product is commutative, AB = BA, we could interchange A and B

in the above statements; i.e., knowledge of AjC and BjAC would serve equally well to determine

ABjC = BAjC. That the robot must obtain the same value for ABjC from either procedure, is

one of our conditions of consistency, Desideratum (IIIa).



202 2: The Product Rule 202

We can state this in a more de�nite form. (ABjC) will be some function of BjC and AjBC:

(ABjC) = F [(BjC); (AjBC)] (2{1)

Now if the reasoning we went through here is not completely obvious, let us examine some alter-

natives. We might suppose, for example, that

(ABjC) = F [(AjC); (BjC)]

might be a permissible form. But we can show easily that no relation of this form could satisfy

our qualitative conditions of Desideratum II. Proposition A might be very plausible given C, and

B might be very plausible given C; but AB could still be very plausible or very implausible.

For example, it is quite plausible that the next person you meet has blue eyes and also quite

plausible that this person's hair is black; and it is reasonably plausible that both are true. On the

other hand it is quite plausible that the left eye is blue, and quite plausible that the right eye is

brown; but extremely implausible that both of those are true. We would have no way of taking

such inuences into account if we tried to use a formula of this kind. Our robot could not reason

the way humans do, even qualitatively, with that kind of functional relation.

But other possibilities occur to us. The method of trying out all possibilities { a kind of \proof

by exhaustion" { can be organized as follows. Introduce the real numbers

u = (ABjC); v = (AjC); w = (BjAC); x = (BjC); y = (AjBC)

If u is to be expressed as a function of two or more of v; w; x; y, there are eleven possibilities. You

can write out each of them, and subject each one to various extreme conditions, as in the brown and

blue eyes (which was the abstract statement: A implies that B is false). Other extreme conditions

are A = B; A = C; C ) A, etc. Carrying out this somewhat tedious analysis, Tribus (1969) shows

that all but two of the possibilities can exhibit qualitative violations of common sense in some

extreme case. The two which survive are u = F (x; y) and u = F (w; v), just the two functional

forms already suggested by our previous reasoning.

We now apply the qualitative requirement discussed in Chapter 1; given any change in the

prior information C ! C0 such that B becomes more plausible but A does not change:

BjC0 > BjC ;

AjBC0 = AjBC ;

common sense demands that AB could only become more plausible, not less:

ABjC0
� ABjC

with equality if and only if AjBC corresponds to impossibility. Likewise, given prior information

C00 such that

BjC00 = BjC

AjBC00 > AjBC

we require that

ABjC00 � ABjC

in which the equality can hold only if B is impossible, given C (for then AB might still be impossible

given C00, although AjBC is not de�ned). Furthermore, the function F (x; y) must be continuous;



203 Chap. 2: THE QUANTITATIVE RULES 203

for otherwise an arbitrarily small increase in one of the plausibilities on the right-hand side of (2{1)

could result in the same large increase in ABjC.

In summary, F (x; y) must be a continuous monotonic increasing function of both x and y. If

we assume it di�erentiable [this is not necessary; see the discussion following (2{4)], then we have

F1(x; y) �
@F

@x
� 0 (2{2a)

with equality if and only if y represents impossibility; and also

F2(x; y) �
@F

@y
� 0 (2{2b)

with equality permitted only if x represents impossibility. Note for later purposes that in this

notation, Fi denotes di�erentiation with respect to the i'th argument of F , whatever it may be.

Next we impose the Desideratum III(a) of \structural" consistency. Suppose we try to �nd

the plausibility (ABCjD) that three propositions would be true simultaneously. Because of the

fact that Boolean algebra is associative: ABC = (AB)C = A(BC), we can do this in two di�erent

ways. If the rule is to be consistent, we must get the same result for either order of carrying out

the operations. We can say �rst that BC will be considered a single proposition, and then apply

(2{1):

(ABCjD) = F [(BCjD); (AjBCD)]

and then in the plausibility (BCjD) we can again apply (2{1) to give

(ABCjD) = FfF [(CjD); (BjCD)]; (AjBCD)g (2{3a)

But we could equally well have said that AB shall be considered a single proposition at �rst. From

this we can reason out in the other order to obtain a di�erent expression:

(ABCjD) = F [(CjD); (ABjCD)] = Ff(CjD); F [(BjCD); (AjBCD)]g (2{3b)

If this rule is to represent a consistent way of reasoning, the two expressions (2{3a), (2{3b) must

always be the same. A necessary condition that our robot will reason consistently in this case

therefore takes the form of a functional equation,

F [F (x; y); z] = F [x; F (y; z)] : (2{4)

This equation has a long history in mathematics, starting from a work of N. H. Abel in 1826.

Acz�el (1966), in his monumental work on functional equations, calls it, very appropriately, \The

Associativity Equation," and lists a total of 98 references to works that discuss it or use it. Acz�el

derives the general solution [Eq. (2{17) below] without assuming di�erentiability; unfortunately,

the proof �lls eleven pages (256{267) of his book. We give here the shorter proof by R. T. Cox

(1961), which assumes di�erentiability.

It is evident that (2{4) has a trivial solution, F (x; y) =const. But that violates our monotonic-

ity requirement (2{2) and is in any event useless for our purposes. Unless (2{4) has a nontrivial

solution, this approach will fail; so we seek the most general nontrivial solution. Using the abbre-

viations
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u � F (x; y); v � F (y; z) ; (2{5)

but still considering (x; y; z) the independent variables, the functional equation to be solved is

F (x; v) = F (u; z) : (2{6)

Di�erentiating with respect to x and y we obtain, in the notation of (2{2),

F1(x; v) = F1(u; z) F1(x; y)

F2(x; v) F1(y; z) = F1(u; z) F2(x; y)
(2{7)

Elimination of F1(u; z) from these equations yields

G(x; v) F1(y; z) = G(x; y) (2{8)

where we use the notation G(x; y) � F2(x; y)=F1(x; y). Evidently, the left-hand side of (2{8) must

be independent of z. Now (2{8) can be written equally well as

G(x; v) F2(y; z) = G(x; y) G(y; z) (2{9)

and, denoting the left-hand sides of (2{8), (2{9) by U; V respectively we verify that @V=@y = @U=@z.

Thus, G(x; y)G(y; z) must be independent of y. The most general function G(x; y) with this

property is

G(x; y) = r
H(x)

H(y)
(2{10)

where r is a constant, and the function H(x) is arbitrary. In the present case, G > 0 by monotonicity

of F , and so we require that r > 0, and H(x) may not change sign in the region of interest.

Using (2{10), (2{8) and (2{9) become

F1(y; z) = H(v)=H(y) (2{11)

F2(y; z) = r H(v)=H(z) (2{12)

and the relation dv = dF (y; z) = F1dy + F2dz takes the form

dv

H(v)
=

dy

H(y)
+ r

dz

H(z)
(2{13)

or, on integration,

w[F (y; z)] = w(v) = w(y) wr(z) (2{14)

where

w(x) � exp

�Z x dx

H(x)

�
; (2{15)

the absence of a lower limit on the integral signifying an arbitrary multiplicative factor in w. But

taking the function w(�) of (2{6) and applying (2{14), we obtain w(x)wr(v) = w(u)wr(z); applying

(2{14) again, our functional equation now reduces to



205 Chap. 2: THE QUANTITATIVE RULES 205

w(x)wr(y)[w(z)]r
2

= w(x)wr(y)wr(z)

Thus we obtain a nontrivial solution only if r = 1, and our �nal result can be expressed in either

of the two forms:

w[F (x; y)] = w(x) w(y) (2{16)

F (x; y) = w�1[w(x)w(y)] : (2{17)

Associativity and commutativity of the logical product thus require that the relation sought must

take the functional form

w(ABjC) = w(AjBC) w(BjC) = w(BjAC) w(AjC) (2{18)

which we shall call henceforth the product rule. By its construction (2{15), w(x) must be a positive

continuous monotonic function, increasing or decreasing according to the sign of H(x); at this stage

it is otherwise arbitrary.

The result (2{18) has been derived as a necessary condition for consistency in the sense of

Desideratum III(a). Conversely, it is evident that (2{18) is also su�cient to ensure this consistency

for any number of joint propositions. For example, there are an enormous number of di�erent ways

in which (ABCDEFGjH) could be expanded by successive partitions in the manner of (2{3); but

if (2{18) is satis�ed, they will all yield the same result.

The requirements of qualitative correspondence with common sense impose further conditions

on the function w(x). For example, in the �rst given form of (2{18) suppose that A is certain, given

C. Then in the \logical environment" produced by knowledge of C, the propositions AB and B are

the same, in the sense that one is true if and only if the other is true. By our most primitive axiom

of all, discussed in Chapter 1, propositions with the same truth value must have equal plausibility:

ABjC = BjC
and also we will have

AjBC = AjC

because if A is already certain given C (i.e., C implies A), then given any other information B

which does not contradict C, it is still certain. In this case, (2{18) reduces to

w(BjC) = w(AjC) w(BjC) (2{19)

and this must hold no matter how plausible or implausible B is to the robot. So our function w(x)

must have the property that

Certainty is represented by w(AjC) = 1 :

Now suppose that A is impossible, given C. Then the proposition AB is also impossible given C:

ABjC = AjC

and if A is already impossible given C (i.e., C implies A), then given any further information B

which does not contradict C, A would still be impossible:

AjBC = AjC :

In this case, equation (2{18) reduces to
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w(AjC) = w(AjC) w(BjC) (2{20)

and again this equation must hold no matter what plausibility B might have. There are only two

possible values of w(AjC) that could satisfy this condition; it could be 0 or +1 (the choice �1 is

ruled out because then by continuity w(BjC) would have to be capable of negative values; (2{20)

would then be a contradiction).

In summary, qualitative correspondence with common sense requires that w(x) be a positive

continuous monotonic function. It may be either increasing or decreasing. If it is increasing, it

must range from zero for impossibility up to one for certainty. If it is decreasing, it must range

from 1 for impossibility down to one for certainty. Thus far, our conditions say nothing at all

about how it varies between these limits.

However, these two possibilities of representation are not di�erent in content. Given any func-

tion w1(x) which is acceptable by the above criteria and represents impossibility by 1, we can

de�ne a new function w2(x) � 1=w1(x), which will be equally acceptable and represents impossibil-

ity by zero. Therefore, there will be no loss of generality if we now adopt the choice 0 � w(x) � 1

as a convention; that is, as far as content is concerned, all possibilities consistent with our desider-

ata are included in this form. [As the reader may check, we could just as well have chosen the

opposite convention; and the entire development of the theory from this point on, including all its

applications, would go through equally well, with equations of a less familiar form but exactly the

same content.]

The Sum Rule

Since the propositions now being considered are of the Aristotelian logical type which must be

either true or false, the logical product AA is always false, the logical sum A+A always true. The

plausibility that A is false must depend in some way on the plausibility that it is true. If we de�ne

u � w(AjB); v � w(AjB), there must exist some functional relation

v = S(u) : (2{21)

Evidently, qualitative correspondence with common sense requires that S(u) be a continuous mono-

tonic decreasing function in 0 � u � 1, with extreme values S(0) = 1; S(1) = 0. But it cannot

be just any function with these properties, for it must be consistent with the fact that the product

rule can be written for either AB or AB:

w(ABjC) = w(AjC) w(BjAC) (2{22)

w(ABjC) = w(AjC) w(BjAC): (2{23)

Thus, using (2{21) and (2{23), Eq. (2{22) becomes

w(ABjC) = w(AjC)S[w(BjAC)] = w(AjC)S

�
w(ABjC)

w(AjC)

�
: (2{24)

Again, we invoke commutativity: w(ABjC) is symmetric in A, B, and so consistency requires that

w(AjC) S

�
w(ABjC)

w(AjC)

�
= w(BjC) S

�
w(BAjC)

w(BjC)

�
: (2{25)

This must hold for all propositions A;B;C; in particular, (2{25) must hold when
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B = AD (2{26)

where D is any new proposition. But then we have the truth{values noted before in (1{8):

AB = B ; BA = A; (2{27)

and in (2{25) we may write

w(ABjC) = w(BjC) = S[w(BjC)]

w(BAjC) = w(AjC) = S[w(AjC)] :
(2{28)

Therefore, using now the abbreviations

x � w(AjC) ; y � w(BjC) (2{29)

Eq. (2-25) becomes a functional equation

x S

�
S(y)

x

�
= y S

�
S(x)

y

�
;

0 � S(y) � x;

0 � x � 1
(2{30)

which expresses a scaling property that S(x) must have in order to be consistent with the product

rule. In the special case y = 1, this reduces to

S[S(x)] = x (2{31)

which states that S(x) is a self-reciprocal function; S(x) = S�1(x). Thus, from (2{21) it follows

also that u = S(v). But this expresses only the evident fact that the relation between A; A is a

reciprocal one; it does not matter which proposition we denote by the simple letter, which by the

barred letter. We noted this before in (1{6); if it had not been obvious before, we should be obliged

to recognize it at this point.

The domain of validity given in (2{30) is found as follows. The proposition D is arbitrary, and

so by various choices of D we can achieve all values of w(DjAC) in

0 � w(DjAC) � 1 : (2{32)

But S(y) = w(ADjC) = w(AjC)w(DjAC), and so (2{32) is just (0 � S(y) � x), as stated in

(2{30). This domain is symmetric in x; y; it can be written equally well with them interchanged.

Geometrically, it consists of all points in the x� y plane lying in the unit square (0 � x; y � 1) and

on or above the curve y = S(x).

Indeed, the shape of that curve is determined already by what (2{30) says for points lying

in�nitesimally above it. For if we set y = S(x) + �, then as � ! 0+ two terms in (2{30) tend to

S(1) = 0, but at di�erent rates. Therefore everything depends on the exact way in which S(1� �)

tends to zero as � ! 0. To investigate this, we de�ne a new variable q(x; y) by

S(x)

y
= 1 � e�q (2{33)

Then we may choose � = e�q, de�ne the function J(q) by

S(1� �) = S(1 � e�q) = exp[�J(q)] ; (2{34)
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and �nd the asymptotic form of J(q) as q !1.

Considering now x, q as the independent variables, we have from (2{33)

S(y) = S[S(x)] + e�q S(x)S0[S(x)] + O(e�2q) :

Using (2{31) and its derivative S0[S(x)]S0(x) = 1, this reduces to

S(y)

x
= 1 � e�(�+q) +O(e�2q) (2{35)

where

�(x) � log

�
�x S0(x)

S(x)

�
> 0 : (2{36)

With these substitutions our functional equation (2{30) becomes

J(q + �) � J(q) = log

�
x

S(x)

�
+ log(1 � e�q) + O(e�2q) ;

0 <q <1

0 <x � 1
(2{37)

As q !1 the last two terms go to zero exponentially fast, so J(q) must be asymptotically linear

J(q) � a+ bq + O(e�q) ; (2{38)

with positive slope

b = ��1 log

�
x

S(x)

�
: (2{39)

In (2{38) there is no periodic term with period �, because (2{37) must hold for a continuum of

di�erent values of x, and therefore for a continuum of values of �(x).

But by de�nition, J is a function of q only, so the right{hand side of (2{39) must be independent

of x. This gives, using (2{36),

x

S(x)
=

�
�xS0(x)

S(x)

�b
; 0 < b <1 (2{40)

or rearranging, S(x) must satisfy the di�erential equation

Sm�1dS + xm�1dx = 0 : (2{41)

where m � 1=b is some positive constant. The only solution of this satisfying S(0) = 1 is

S(x) = (1� xm)1=m ;
0 � x � 1

0 <m <1
(2{42)

and conversely, we verify at once that (2{42) is a solution of (2{30).

The result (2{42) was �rst derived by R. T. Cox (1946) by a di�erent argument which assumed

S(x) twice di�erentiable. Again, Acz�el (1966) derives the same result without assuming di�erentia-

bility. [But to assume di�erentiability in the present application seems to us a very innocuous step,

for if the functional equations had led us to non{di�erentiable functions, we would have rejected

this whole theory as a qualitative violation of common sense]. In any event, (2{42) is the most

general function satisfying the functional equation (2{30) and the left boundary condition S(0) = 1;
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whereupon we are encouraged to �nd that it automatically satis�es the right boundary condition

S(1) = 0.

Since our derivation of the functional equation (2{30) used the special choice (2{26) for B,

we have shown thus far only that (2{42) is a necessary condition to satisfy the general consistency

requirement (2{25). To check its su�ciency, substitute (2{42) into (2{25). We obtain

wm(AjC)� wm(ABjC) = wm(BjC)� wm(BAjC) ;

a trivial identity by virtue of (2{18) and (2{23). Therefore, (2{42) is the necessary and su�cient

condition on S(x) for consistency in the sense (2{25).

Our results up to this point can be summarized as follows. Associativity of the logical product

requires that some monotonic function w(x) of the plausibility x = AjB must obey the product

rule (2{18). Our result (2{42) states that this same function must also obey a sum rule:

wm(AjB) + wm(AjB) = 1 (2{43)

for some positive m. Of course, the product rule itself can be written equally well as

wm(ABjC) = wm(AjC) wm(BjAC) = wm(BjC) wm(AjBC) (2{44)

but then we see that the value of m is actually irrelevant; for whatever value is chosen, we can

de�ne a new function

p(x) � wm(x) (2{45)

and our rules take the form

p(ABjC) = p(AjC) p(BjAC) = p(BjC) p(AjBC) (2{46)

p(AjB) + p(AjB) = 1 : (2{47)

In fact, this entails no loss of generality, for the only requirement we have imposed on the function

w(x) is that it is a continuous monotonic increasing function ranging from w = 0 for impossibility

to w = 1 for certainty. But if w(x) satis�es this, then so also does wm(x), 0 < m <1. Therefore,

to say that we could use di�erent values of m does not give us any freedom that we did not

have already in the arbitrariness of w(x). All possibilities allowed by our desiderata are contained

in (2{46), (2{47) in which p(x) is any continuous monotonic increasing function with the range

0 � p(x) � 1.

Are further relations needed to yield a complete set of rules for plausible inference, adequate

to determine the plausibility of any logic function f(A1; : : : ; An) from those of fA1; : : : ; Ang? We

have, in the product rule (2{46) and sum rule (2{47), formulas for the plausibility of the conjunction

AB and the negation A. But we noted, in the discussion following Eq. (1{12), that conjunction

and negation are an adequate set of operations, from which all logic functions can be constructed.

Therefore, one would conjecture that our search for basic rules should be �nished; it ought to

be possible, by repeated applications of the product rule and sum rule, to arrive at the plausibility

of any proposition in the Boolean algebra generated by fA1; : : : ; Ang.

To verify this, we seek �rst a formula for the logical sum A + B. Applying the product rule

and sum rule repeatedly, we have
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p(A+ BjC) = 1 � p(A BjC) = 1 � p(AjC) p(BjAC)

= 1 � p(AjC)[1� p(BjAC)] = p(AjC) + p(ABjC)

= p(AjC) + p(BjC) p(AjBC) = p(AjC) + p(BjC)[1� p(AjBC)]

and �nally,

p(A+ BjC) = p(AjC) + p(BjC) � p(ABjC) : (2{48)

This generalized sum rule is one of the most useful in applications. Evidently, the primitive sum

rule (2{47) is a special case of (2{48), with the choice B = A.

Exercise 2.1 Is it possible to �nd a general formula for p(CjA+B), analogous to (2{48), from

the product and sum rules? If so, derive it; if not, explain why this cannot be done.

Exercise 2.2 Now suppose we have a set of propositions fA1; � � � ; Ang which on information

X are mutually exclusive: p(AiAj jX) = p(AijX) �ij. Show that p(Cj(A1+ A2 + � � �+An)X) is

a weighted average of the separate plausibilities p(CjAiX):

p(Cj(A1 + � � �+An)X) = p(CjA1X + A2X + � � �+ AnX) =

P
i p(AijX) p(CjAiX)P

i p(AijX)
: (2{49)

To extend the result (2{48), we noted following (1{11) that any logic function other than the trivial

contradiction can be expressed in disjunctive normal form, as a logical sum of the basic conjunctions

such as (1{11). Now the plausibility of any one of the basic conjunctions fQi; 1 � i � 2ng is

determined by repeated applications of the product rule; and then repeated application of (2{48)

will yield the plausibility of any logical sum of the Qi. In fact, these conjunctions are mutually

exclusive, so we shall �nd [Eq. (2{64) below] that this reduces to a simple sum �ip(QijC) of at

most (2n � 1) terms.

So, just as conjunction and negation are an adequate set for deductive logic, the above product

and sum rules are an adequate set for plausible inference, in the following sense. Whenever the

background information is enough to determine the plausibilities of the basic conjunctions, our rules

are adequate to determine the plausibility of every proposition in the Boolean algebra generated

by fA1; � � � ; Ang. Thus, in the case n = 4 we need the plausibilities of 24 = 16 basic conjunctions,

whereupon our rules will determine the plausibility of each of the 216 = 65; 536 propositions in the

Boolean algebra.

But this is almost always more than we need in a real application; if the background information

is enough to determine the plausibility of a few of the basic conjunctions, this may be adequate for

the small part of the Boolean algebra that is of concern to us.

Qualitative Properties

Now let us check to see how the theory based on (2{46) and (2{47) is related to the theory of

deductive logic and the various qualitative syllogisms from which we started in Chapter 1. In the

�rst place it is obvious that in the limit as p(AjB) ! 0 or p(AjB) ! 1, the sum rule (2{47)

expresses the primitive postulate of Aristotelian logic: if A is true, then A must be false, etc.

Indeed, all of that logic consists of the two strong syllogisms (1{1), (1{2) and all that follows

from them; using now the implication sign (1{9) to state the major premise:
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A) B

A true

B true

A) B

B false

A false

(2{50)

and the endless stream of their consequences. If we let C stand for their major premise:

C � \A) B" (2{51)

then these syllogisms correspond to our product rule (2{46) in the forms

p(BjAC) =
p(ABjC)

p(AjC)
; p(AjBC) =

p(ABjC)

p(BjC)
(2{52)

respectively. But from (2{50) we have p(ABjC) = p(AjC) and p(ABjC) = 0, and so (2{52) reduces

to

p(BjAC) = 1 ; p(AjBC) = 0

as stated in the syllogisms (2{50). Thus the relation is simply: Aristotelian deductive logic is the

limiting form of our rules for plausible reasoning, as the robot becomes more and more certain of

its conclusions.

But our rules have also what is not contained in deductive logic: a quantitative form of the

weak syllogisms (1{3), (1{4). To show that those original qualitative statements always follow from

the present rules, note that the �rst weak syllogism

A) B

B is true (2{53)

Therefore, A becomes more plausible

corresponds to the product rule (2{46) in the form

p(AjBC) = p(AjC)
p(BjAC)

p(BjC)
: (2{54)

But from (2{50), p(BjAC) = 1, and since p(BjC) � 1, (2{54) gives

p(AjBC) � p(AjC) (2{55)

as stated in the syllogism. Likewise, the syllogism (1{4)

A) B

A is false (2{56)

Therefore, B becomes less plausible

corresponds to the product rule in the form

p(BjAC) = p(BjC)
p(AjBC)

p(AjC)
: (2{57)

But from (2{55) it follows that p(AjBC) � p(AjC); and so (2{57) gives

p(BjAC) � p(BjC) (2{58)

as stated in the syllogism.

Finally, the policeman's syllogism (1{5), which seemed very weak when stated abstractly, is

also contained in our product rule, stated in the form (2{54). Letting now C stand for background
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information [not noted explicitly in (1{5) because the need for it was not yet apparent], the major

premise, \If A is true, then B becomes more plausible," now takes the form

p(BjAC) > p(BjC) (2{59)

and (2{54) gives at once

p(AjBC) > p(AjC) (2{60)

as stated in the syllogism.

But now we have more than the mere qualitative statement (2{60). In Chapter 1 we wondered,

without answering: What determines whether the evidence B elevates A almost to certainty, or

has a negligible e�ect on its plausibility? The answer from (2{54) is that, since p(BjAC) cannot

be greater than unity, a large increase in the plausibility of A can occur only when p(BjC) is very

small. Observing the gentleman's behavior (B) makes his guilt (A) seem virtually certain, because

that behavior is otherwise so very unlikely on the background information; no policeman has ever

seen an innocent person behaving that way. On the other hand, if knowing that A is true can

make only a negligible increase in the plausibility of B, then observing B can in turn make only a

negligible increase in the plausibility of A.

We could give many more comparisons of this type; indeed, the complete qualitative corre-

spondence of these rules with common sense has been noted and demonstrated by many writers,

including Keynes (1921), Je�reys (1939), P�olya (1945, 1954), Cox (1961), Tribus (1969), de Finetti

(1974), and Rosenkrantz (1977). The treatment of P�olya was described briey in our Preface and

Chapter 1, and we have just recounted that of Cox more fully. However, our aim now is to push

ahead to quantitative applications; so we return to the basic development of the theory.

Numerical Values

We have found so far the most general consistent rules by which our robot can manipulate plau-

sibilities, granted that it must associate them with real numbers, so that its brain can operate by

the carrying out of some de�nite physical process. While we are encouraged by the familiar formal

appearance of these rules and their qualitative properties just noted, two evident circumstances

show that our job of designing the robot's brain is not yet �nished.

In the �rst place, while the rules (2{46), (2{47) place some limitations on how plausibilities of

di�erent propositions must be related to each other, it would appear that we have not yet found

any unique rules, but rather an in�nite number of possible rules by which our robot can do plausible

reasoning. Corresponding to every di�erent choice of a monotonic function p(x), there seems to be

a di�erent set of rules, with di�erent content.

Secondly, nothing given so far tells us what actual numerical values of plausibility should be

assigned at the beginning of a problem, so that the robot can get started on its calculations. How

is the robot to make its initial encoding of the background information, into de�nite numerical

values of plausibilities? For this we must invoke the \interface" desiderata IIIb, IIIc of (1{23), not

yet used.

The following analysis answers both of these questions, in a way both interesting and unex-

pected. Let us ask for the plausibility (A1 + A2 + A3jB) that at least one of three propositions

fA1; A2; A3g is true. We can �nd this by two applications of the extended sum rule (2{48), as

follows. The �rst application gives

p(A1 + A2 + A3jB) = p(A1 + A2jB) + p(A3jB) � p(A1A3 +A2A3jB)

where we �rst considered (A1 +A2) as a single proposition, and used the logical relation

(A1 +A2)A3 = A1A3 + A2A3 :
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Applying (2{48) again, we obtain seven terms which can be grouped as follows:

p(A1 +A2 +A3jB) = p(A1jB) + p(A2jB) + p(A3jB)

� p(A1A2jB)� p(A2A3jB)� p(A3A1jB)

+ p(A1A2A3jB)

(2{61)

Now suppose these propositions are mutually exclusive; i.e., the evidence B implies that no two of

them can be true simultaneously:

p(AiAj jB) = p(AijB)�ij : (2{62)

Then the last four terms of (2{61) vanish, and we have

p(A1 +A2 +A3jB) = p(A1jB) + P (A2jB) + P (A3jB) : (2{63)

Adding more propositions A4; A5, etc., it is easy to show by induction that if we have n mutually

exclusive propositions fA1 � � �Ang, (2{63) generalizes to

p(A1 + � � �+ AmjB) =

mX
i=1

p(AijB) ; 1 � m � n (2{64)

a rule which we will be using constantly from now on.

In conventional expositions, Eq. (2{64) is usually introduced �rst as the basic but, as far as

one can see, arbitrary axiom of the theory. The present approach shows that this rule is deducible

from simple qualitative conditions of consistency. The viewpoint which sees (2{64) as the primitive,

fundamental relation is one which we are particularly anxious to avoid (see Comments at the end

of this Chapter).

Now suppose that the propositions fA1 : : :Ang are not only mutually exclusive but also ex-

haustive; i.e., the background information B stipulates that one and only one of them must be

true. In that case the sum (2{64) for m = n must be unity:
nX
i=1

p(AijB) = 1 : (2{65)

This alone is not enough to determine the individual numerical values p(AijB). Depending on

further details of the information B, many di�erent choices might be appropriate, and in general

�nding the p(AijB) by logical analysis of B can be a di�cult problem. It is, in fact, an open{ended

problem, since there is no end to the variety of complicated information that might be contained in

B; and therefore no end to the complicated mathematical problems of translating that information

into numerical values of p(AijB). As we shall see, this is one of the most important current research

problems; every new principle we can discover for translating information B into numerical values

of p(AijB) will open up a new class of useful applications of this theory.

There is, however, one case in which the answer is particularly simple, requiring only direct

application of principles already given. But we are entering now into a very delicate area, a

cause of confusion and controversy for over a Century. In the early stages of this theory, as in

elementary geometry, our intuition runs so far ahead of logical analysis that the point of the logical

analysis is often missed. The trouble is that intuition leads us to the same �nal conclusions far

more quickly; but without any correct appreciation of their range of validity. The result has been

that the development of this theory has been retarded for some 150 years because various workers
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have insisted on debating these issues on the basis, not of demonstrative arguments, but of their

conicting intuitions.

At this point, therefore, we must ask the reader to suppress all intuitive feelings you may have,

and allow yourself to be guided solely by the following logical analysis. The point we are about to

make cannot be developed too carefully; and unless it is clearly understood, we will be faced with

tremendous conceptual di�culties from here on.

Consider two di�erent problems. Problem I is the one just formulated; we have a given set

of mutually exclusive and exhaustive propositions fA1 : : :Ang and we seek to evaluate p(AijB)I .

Problem II di�ers in that the labels A1; A2 of the �rst two propositions have been interchanged.

These labels are, of course, entirely arbitrary; it makes no di�erence which proposition we choose

to call A1 and which A2. In Problem II, therefore, we also have a set of mutually exclusive and

exhaustive propositions fA0
1 : : :A

0
ng, given by

A0
1 � A2

A0
2 � A1

A0
k � Ak ; 3 � k � n

(2{66)

and we seek to evaluate the quantities p(A0
ijB)II , i = 1; 2; : : : ; n.

In interchanging the labels we have generated a di�erent but closely related problem. It is clear

that, whatever state of knowledge the robot had about A1 in Problem I, it must have the same state

of knowledge about A0
2 in Problem II, for they are the same proposition, the given information B

is the same in both problems, and it is contemplating the same totality of propositions fA1 : : :Ang

in both problems. Therefore we must have

p(A1jB)I = p(A0
2jB)II (2{67)

and similarly

p(A2jB)I = p(A0
1jB)II : (2{68)

We will call these the transformation equations. They describe only how the two problems are

related to each other, and therefore they must hold whatever the information B might be; in

particular, however plausible or implausible the propositions A1; A2 might seem to the robot in

Problem I.

But now suppose that information B is indi�erent between propositions A1 and A2; i.e., if it

says something about one, it says the same thing about the other, and so it contains nothing that

would give the robot any reason to prefer either one over the other. In this case, Problems I and

II are not merely related, but entirely equivalent; i.e., the robot is in exactly the same state of

knowledge about the set of propositions fA0
1 : : :A

0
ng in Problem II, including their labeling, as it is

about the set fA1 : : :Ang in Problem I.

Now we invoke our Desideratum of Consistency in the sense IIIc in (1{23). This stated that

equivalent states of knowledge must be represented by equivalent plausibility assignments. In

equations, this statement is

p(AijB)I = p(A0
ijB)II ; i = 1; 2; : : : ; n (2{69)

which we shall call the symmetry equations. But now, combining equations (2{67), (2{68), (2{69)

we obtain

p(A1jB)I = p(A2jB)I : (2{70)

In other words, propositions A1 and A2 must be assigned equal plausibilities in Problem I (and, of

course, also in Problem II).
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At this point, depending on your personality and background in this subject, you will be

either greatly impressed or greatly disappointed by the result (2{70). The argument we have just

given is the �rst \baby" version of the group invariance principle for assigning plausibilities; it

will be extended greatly in a later Chapter, when we consider the general problem of assigning

\noninformative priors".

More generally, let fA00
1 : : :A

00
ng be any permutation of fA1 : : :Ang and let Problem III be that

of determining the p(A00
i jB). If the permutation is such thatA

00
k � Ai, there will be n transformation

equations of the form

p(AijB)I = p(A00
k jB)III (2{71)

which show how Problems I and III are related to each other; and these relations will hold whatever

the given information B.

But if information B is now indi�erent between all the propositions Ai, then the robot is in

exactly the same state of knowledge about the set of propositions fA00
1 : : :A

00
ng in Problem III as

it was about the set fA1 : : :Ang in Problem I; and again our desideratum of consistency demands

that it assign equivalent plausibilities in equivalent states of knowledge, leading to the n symmetry

conditions

p(AkjB)I = p(A00
k jB)III ; k = 1; 2; :::; n (2{72)

From (2{71) and (2{72) we obtain n equations of the form

p(AijB)I = p(AkjB)I (2{73)

Now these relations must hold whatever the particular permutation we used to de�ne Problem III.

There are n! such permutations, and so there are actually n! equivalent problems in which, for given

i, the index k will range over all of the (n � 1) others in (2{73). Therefore, the only possibility

is that all of the p(AijB)I be equal (indeed, this is required already by consideration of a single

permutation if it is cyclic of order n). Since the fA1 : : :Ang are exhaustive, Eq. (2{65) will hold,

and the only possibility is therefore

p(AijB)I =
1

n
; (l � i � n) (2{74)

and we have �nally arrived at a set of de�nite numerical values! Following Keynes (1921), we shall

call this result the Principle of Indi�erence.

Perhaps, in spite of our admonitions, the reader's intuition had already led to just this conclu-

sion, without any need for the rather tortuous reasoning we have just been through. If so, then at

least that intuition is consistent with our desiderata. But merely writing down (2{74) intuitively

gives one no appreciation of the importance and uniqueness of this result. To see the uniqueness,

note that if the robot were to assign any values di�erent from (2{74), then by a mere permutation

of labels we could exhibit a second problem in which the robot's state of knowledge is the same,

but in which it is assigning di�erent plausibilities.

To see the importance, note that (2{74) actually answers both of the questions posed at the

beginning of this Section. It shows { in one particular case which can be greatly generalized { how

the information given the robot can lead to de�nite numerical values, so that a calculation can get

started. But it also shows something even more important because it is not at all obvious intuitively;

the information given the robot determines the numerical values of the quantities p(x) = p(AijB),

and not the numerical values of the plausibilities x = AijB from which we started. This, also, will

be found to be true in general.
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Recognizing this gives us a beautiful answer to the �rst question posed at the beginning of this

Section; after having found the product and sum rules, it still appeared that we had not found any

unique rules of reasoning, because every di�erent choice of a monotonic function p(x) would lead

to a di�erent set of rules (i.e., a set with di�erent content). But now we see that no matter what

function p(x) we choose, we shall be led to the same result (2{74), and the same numerical value of

p. Furthermore, the robot's reasoning processes can be carried out entirely by manipulation of the

quantities p, as the product and sum rules show; and the robot's �nal conclusions can be stated

equally well in terms of the p's instead of the x's.

So, we now see that di�erent choices of the function p(x) correspond only to di�erent ways

we could design the robot's internal memory circuits. For each proposition Ai about which it is

to reason, it will need a memory address in which it stores some number representing the degree

of plausibility of Ai, on the basis of all the data it has been given. Of course, instead of storing

the number pi it could equally well store any strict monotonic function of pi. But no matter what

function it used internally, the externally observable behavior of the robot would be just the same.

As soon as we recognize this it is clear that, instead of saying that p(x) is an arbitrary monotonic

function of x, it is much more to the point to turn this around and say that:

The plausibility x � AjB is an arbitrary monotonic function of p, de�ned in (0 � p � 1).

It is p that is rigidly �xed by the data of a problem, not x.

The question of uniqueness is therefore disposed of automatically by the result (2{74); in spite

of �rst appearances, there is actually only one consistent set of rules by which our robot can do

plausible reasoning, and for all practical purposes, the plausibilities x � AjB from which we started

have faded entirely out of the picture! We will just have no further use for them.

Having seen that our theory of plausible reasoning can be carried out entirely in terms of the

quantities p, we �nally introduce their technical names; from now on, we will call these quantities

probabilities. The word \probability" has been studiously avoided up to this point, because while

the word does have a colloquial meaning to the proverbial \man on the street," it is for us a

technical term, which ought to have a precise meaning. But until it had been demonstrated that

these quantities are uniquely determined by the data of a problem, we had no grounds for supposing

that the quantities p were possessed of any precise meaning.

We now see that they de�ne a particular scale on which degrees of plausibility can be measured.

Out of all possible monotonic functions which could in principle serve this purpose equally well,

we choose this particular one, not because it is more \correct," but because it is more convenient;

i.e., it is the quantities p that obey the simplest rules of combination, the product and sum rules.

Because of this, numerical values of p are directly determined by our information.

This situation is analogous to that in thermodynamics, where out of all possible empirical

temperature scales t, which are monotonic functions of each other, we �nally decide to use the

Kelvin scale T ; not because it is more \correct" than others but because it is more convenient; i.e.,

the laws of thermodynamics take their simplest form [dU = TdS � PdV; dG = �SdT + V dP ,

etc.] in terms of this particular scale. Because of this, numerical values of Kelvin temperatures

are \rigidly �xed" in the sense of being directly measurable in experiments, independently of the

properties of any particular substance like water or mercury.

Another rule, equally appealing to our intuition, follows at once from (2{74). Consider the

traditional \Bernoulli Urn" of probability theory; ours is known to contain ten balls of identical

size and weight, labelled f1; 2; : : : ; 10g. Three balls (numbers 4, 6, 7) are black, the other seven are

white. We are to shake the Urn and draw one ball blindfolded. The background information B in

(2{74) consists of the statements in the last two sentences. What is the probability that we draw

a black one?
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De�ne the propositions: Ai � \The i'th ball is drawn" , 1 � i � 10. Since the background

information is indi�erent to these ten possibilities, (2{74) applies and the robot assigns

p(AijB) =
1

10
; 1 � i � 10

The statement that we draw a black ball is that we draw number 4, 6, or 7;

p(BlackjB) = p(A4 +A6 +A7jB) :

But these are mutually exclusive propositions (i.e., they assert mutually exclusive events) so (2{64)

applies and the robot's conclusion is

p(BlackjB) =
3

10
(2{75)

as intuition had told us already. More generally, if there are N such balls, and the proposition A is

de�ned to be true on any speci�ed subset of M of them, (0 �M � N), false on the rest, we have

p(AjB) =
M

N
: (2{76)

This was the original mathematical de�nition of probability, as given by James Bernoulli (1713)

and used by most writers for the next 150 years. For example, Laplace's great Th�eorie analytique

des probabilit�es (1812) opens with this sentence: \The Probability of an event is the ratio of the

number of cases favorable to it, to the number of all cases possible when nothing leads us to expect

that any one of these cases should occur more than any other, which renders them, for us, equally

possible."

Exercise 2.3. Limits on Probability Values. As soon as we have the numerical values a =

P (AjC) and b = P (BjC), the product and sum rules place some limits on the possible numerical

values for their conjunction and disjunction. Supposing that a � b, show that the probability of

the conjunction cannot exceed that of the least probable proposition: 0 � P (ABjC) � a, and

the probability of the disjunction cannot be less than that of the most probable proposition:

b � P (A + BjC) � 1. Then show that, if a + b > 1, there is a stronger inequality for the

conjunction; and if a+b < 1 there is a stronger one for the disjunction. These necessary general

inequalities are helpful in detecting errors in calculations.

Notation and Finite Sets Policy

Now we can introduce the notation to be used in the remainder of this work (discussed more fully

in Appendix B). Henceforth, our formal probability symbols will use the capital P :

P (AjB)

which signi�es that the arguments are propositions. Probabilities whose arguments are numerical

values are generally denoted by other functional symbols such as

f(rjn; p)

which denote ordinary mathematical functions. The reason for making this distinction is to avoid

ambiguity in the meaning of our symbols, which has been a recent problem in this �eld.
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However, in agreement with the customary loose notation in the existing literature, we some-

times relax our standards enough to allow the probability symbols with small p: p(xjy) or p(AjB)

or p(xjB) to have arguments which can be either propositions or numerical values, in any mix.

Thus the meaning of expressions with small p can be judged only from the surrounding context.

It is very important to note that our consistency theorems have been established only for

probabilities assigned on �nite sets of propositions. In principle, every problem must start with

such �nite set probabilities; extension to in�nite sets is permitted only when this is the result

of a well{de�ned and well{behaved limiting process from a �nite set. More generally, in any

mathematical operations involving in�nite sets the safe procedure is the �nite sets policy:

Apply the ordinary processes of arithmetic and analysis only to expressions with a �nite

number of terms. Then after the calculation is done, observe how the resulting �nite

expressions behave as the number of terms increases inde�nitely.

In laying down this rule of conduct, we are only following the policy that mathematicians from

Archimedes to Gauss have considered clearly necessary for nonsense avoidance in all of mathematics.

But more recently, the popularity of in�nite set theory and measure theory have led some to

disregard it and seek short{cuts which purport to use measure theory directly. Note, however,

that this rule of conduct is consistent with the original Lebesgue de�nition of measure, and when

a well{behaved limit exists it leads us automatically to correct \measure theoretic" results. Indeed,

this is how Lebesgue found his �rst results.

The danger is that the present measure theory notation presupposes the in�nite limit already

accomplished, but contains no symbol indicating which limiting process was used. Yet as noted

in our Preface, di�erent limiting processes { equally well{behaved { lead in general to di�erent

results. When there is no well{behaved limit, any attempt to go directly to the limit can result in

nonsense, the cause of which cannot be seen as long as one looks only at the limit, and not at the

limiting process.

This little Sermon is an introduction to Chapter 15 on In�nite Set Paradoxes, where we shall

see some of the results that have been produced by those who ignored this rule of conduct, and

tried to calculate probabilities directly on an in�nite set without considering any limit from a �nite

set. The results are at best ambiguous, at worst nonsensical.

COMMENTS

It has taken us two Chapters of close reasoning to get back to the point (2{76) from which Laplace

started some 180 years ago. We shall try to understand the intervening period, as a weird episode

of history, throughout the rest of the present work. The story is so complicated that we can unfold

it only gradually, over the next ten Chapters. To make a start on this, let us consider some of the

questions often raised about the use of probability theory as an extension of logic.

`Subjective" vs \Objective" These words are abused so much in probability theory that we try

to clarify our use of them. In the theory we are developing, any probability assignment is necessarily

\subjective" in the sense that it describes only a state of knowledge, and not anything that could

be measured in a physical experiment. Inevitably, someone will demand to know: \Whose state of

knowledge?" The answer is always: \The robot { or anyone else who is given the same information

and reasons according to the desiderata used in our derivations in this Chapter."

Anyone who has the same information but comes to a di�erent conclusion than our robot,

is necessarily violating one of those desiderata. While nobody has the authority to forbid such

violations, it appears to us that a rational person, should he discover that he was violating one of

them, would wish to revise his thinking (in any event, he would surely have di�culty in persuading

anyone else, who was aware of that violation, to accept his conclusions).
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Now it was just the function of our interface desiderata (IIIb), (IIIc) to make these probability

assignments completely \objective" in the sense that they are independent of the personality of

the user. They are a means of describing (or what is the same thing, of encoding) the information

given in the statement of a problem, independently of whatever personal feelings (hopes, fears,

value judgments, etc.) you or I might have about the propositions involved. It is \objectivity" in

this sense that is needed for a scienti�cally respectable theory of inference.

G�odel's Theorem. To answer another inevitable question, we recapitulate just what has and

what has not been proved in this Chapter. The main constructive requirement which determined

our product and sum rules was the desideratum (IIIa) of \structural consistency." Of course, this

does not mean that our rules have been proved consistent; it means only that any other rules which

represent degrees of plausibility by real numbers, but which di�er in content from ours, will lead

necessarily either to inconsistencies or violations of our other desiderata.

A famous theorem of Kurt G�odel (1931) states that no mathematical system can provide a

proof of its own consistency. Does this prevent us from ever proving the consistency of probability

theory as logic? We are not prepared to answer this fully, but perhaps we can clarify the situation

a little.

First, let us be sure that \inconsistency" means the same thing to us and to a logician. What we

had in mind was that if our rules were inconsistent, then it would be possible to derive contradictory

results from valid application of them; for example, by applying the rules in two equally valid ways,

one might be able to derive both P (AjBC) = 1=3 and P (AjBC) = 2=3. Cox's functional equations

sought to guard against this. Now when a logician says that a system of axioms fA1; A2; : : : ; Ang

is inconsistent, he means that a contradiction can be deduced from them; i.e., some proposition Q

and its denial Q are both deducible. Indeed, this is not really di�erent from our meaning.

To understand the above G�odel result, the essential point is the principle of elementary logic

that a contradiction AA implies all propositions, true and false. [For, given any two propositions

A and B, we have A ) (A + B), therefore AA ) A(A + B) = AA + AB ) B.] Then let

A = A1A2 � � �An be the system of axioms underlying a mathematical theory and T any proposition,

or theorem, deducible from them:y

A) T :

Now whatever T may assert, the fact that T can be deduced from the axioms cannot prove that

there is no contradiction in them, since if there were a contradiction, T could certainly be deduced

from them!

This is the essence of the G�odel theorem, as it pertains to our problems. As noted by R. A.

Fisher (1956), it shows us the intuitive reason why G�odel's result is true. We do not suppose that

any logician would accept Fisher's simple argument as a proof of the full G�odel theorem; yet for

most of us it is more convincing than G�odel's long and complicated proof.z

y In Chapter 1 we noted the tricky distinction between the weak property of formal implication and the

strong one of logical deducibility; by `implication of a proposition C' we really mean `logically deducible

from C and the totality of other background information'. Conventional expositions of Aristotelian logic

are, in our view, awed by their failure to make explicit mention of background information, which is usually

essential to our reasoning, whether inductive or deductive. But in the present argument, we can understand

A as including all the propositions that constitute that background information; then `implication' and

`logical deducibility' are the same thing.
z The 1957 Edition of Harold Je�reys' Scienti�c Inference has a short summary of G�odel's original rea-

soning which is far clearer and easier to read than any other `explanation' we have seen. The full theorem

refers to other matters of concern in 1931, but of no interest to us right now; the above discussion has

abstracted the part of it that we need to understand for our present purposes.
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Now suppose that the axioms contain an inconsistency. Then the opposite of T and therefore

the contradiction T T can also be deduced from them:

A) T :

So if there is an inconsistency, its existence can be proved by exhibiting any proposition T and its

opposite T that are both deducible from the axioms. However, in practice it may not be easy to

�nd a T for which one sees how to prove both T and T .

Evidently, we could prove the consistency of a set of axioms if we could �nd a feasible procedure

which is guaranteed to locate an inconsistency if one exists; so G�odel's theorem seems to imply that

no such procedure exists. Actually, it says only that no such procedure derivable from the axioms

of the system being tested exists.

Yet we shall �nd that probability theory comes close to this; it is a powerful analytical tool

which can search out a set of propositions and detect a contradiction in them if one exists. The

principle is that probabilities conditional on contradictory premises do not exist. Therefore, put

our robot to work; i.e., write a computer program to calculate probabilities p(BjE) conditional on a

set of propositions E = (E1E2 : : : En). Even though no contradiction is apparent from inspection,

if there is a contradiction hidden in E, the computer program will crash.

We discovered this \empirically", and after some thought realized that it is not a reason for

dismay, but rather a valuable diagnostic tool that warns us of unforeseen special cases in which

our formulation of a problem can break down. It will be used for this purpose later, particularly

in Chapter 21.

If the computer program does not crash, but prints out valid numbers, then we know that the

conditioning propositions Ei are mutually consistent, and we have accomplished what one might

have thought to be impossible in view of G�odel's theorem. But of course our use of probability

theory appeals to principles not derivable from the propositions being tested, so there is no di�culty;

it is important to understand what G�odel's theorem does and does not prove.

When G�odel's theorem �rst appeared, with its more general conclusion that a mathematical

system may contain certain propositions that are undecidable within that system, it seems to have

been a great psychological blow to logicians, who saw it at �rst as a devastating obstacle to what

they were trying to achieve.

Yet a moment's thought shows us that many quite simple questions are undecidable by de-

ductive logic. There are situations in which one can prove that a certain property must exist in

a �nite set, even though it is impossible to exhibit any member of the set that has that property.

For example, two persons are the sole witnesses to an event; they give opposite testimony about it

and then both die. Then we know that one of them was lying, but it is impossible to determine

which one.

In this example, the undecidability is not an inherent property of the proposition or the event;

it signi�es only the incompleteness of our own information. But this is equally true of abstract

mathematical systems; when a proposition is undecidable in such a system, that means only that

its axioms do not provide enough information to decide it. But new axioms, external to the original

set, might supply the missing information and make the proposition decidable after all.

In the future, as science becomes more and more oriented to thinking in terms of information

content, G�odel's result will come to seem more of a platitude than a paradox. Indeed, from our

viewpoint \undecidability" merely signi�es that a problem is one that calls for inference rather

than deduction. Probability theory as extended logic is designed speci�cally for such problems.

These considerations seem to open up the possibility that, by going into a still wider �eld by

invoking principles external to probability theory, one might be able to prove the consistency of

our rules. At the moment, this appears to us to be an open question.
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Needless to say, no inconsistency has ever been found from correct application of our rules,

although some of our calculations will put them to a severe test. Apparent inconsistencies have

always proved, on closer examination, to be misapplications of the rules. On the other hand,

guided by Cox's theorems which tell us where to look, we have never had the slightest di�culty

in exhibiting the inconsistencies in the ad hoc rules which abound in the literature, which di�er in

content from ours and whose sole basis is the intuitive judgment of their inventors. Examples are

found throughout the sequel, but particularly in Chapters 5, 15, 17.

Venn Diagrams. Doubtless, some readers will ask, \After the rather long and seemingly un-

motivated derivation of the extended sum rule (2{48), which in our new notation now takes the

form:

P (A+BjC) = P (AjC) + P (BjC)� P (ABjC) (2{48)

why did we not illustrate it by the Venn diagram? That makes its meaning so much clearer." [Here

we draw two circles labelled A and B, with intersection labelled AB, all within a circle C.]

The Venn diagram is indeed a useful device, illustrating { in one special case { why the negative

term appears in (2{48). But it can also mislead, because it suggests to our intuition more than the

actual content of (2{48). Looking at the Venn diagram, we are encouraged to ask, \What do the

points in the diagram mean?" If the diagram is intended to illustrate (2{48), then the probability

of A is, presumably, represented by the area of circle A; for then the total area covered by circles

A, B is the sum of their separate areas, minus the area of overlap, corresponding exactly to (2{48).

Now the circle A can be broken down into non{overlapping subregions in many di�erent ways;

what do these subregions mean? Since their areas are additive, if the Venn diagram is to remain

applicable they must represent a re�nement of A into the disjunction of some mutually exclusive

sub{propositions. We can { if we have no mathematical scruples about approaching in�nite limits {

imagine this subdivision carried down to the individual points in the diagram. Therefore these

points must represent some ultimate elementary propositions !i into which A can be resolved. Of

course, consistency then requires us to suppose that B and C can also be resolved into these same

propositions !i.

Already, we have jumped to the conclusion that the propositions to which we assign probabil-

ities correspond to sets of points in some space, that the logical disjunction A + B stands for the

union of the sets, the conjunction AB for their intersection, that the probabilities are an additive

measure over those sets. But the general theory we are developing has no such structure; all these

things are properties only of the Venn diagram.

In developing our theory of inference we have taken special pains to avoid restrictive assump-

tions which would limit its scope; it is to apply, in principle, to any propositions with unambiguous

meaning. In the special case where those propositions happen to be statements about sets, the

Venn diagram is an appropriate illustration of (2{48). But most of the propositions about which

we reason, for example,

A � \It will rain today,"

B � \The roof will leak,"

are simply declarative statements of fact, which may or may not be resolvable into more elementary

propositions within the context of our problem.

Of course, one can always force such a resolution by introducing irrelevancies; for example,

even though the above{de�ned B has nothing to do with penguins, we could still resolve it into the

disjunction:

B = BC1 + BC2 +BC3 + � � �+ BCN
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where Ck � \The number of penguins in Antarctica is k." By choosing N su�ciently large, we

will surely be making a valid statement of Boolean algebra; but this is idle and it cannot help us

to reason about a leaky roof.

Even if a meaningful resolution exists in our problem, it may not be of any use to us. For

example, the proposition \Rain Today" could be resolved into an enumeration of every conceivable

trajectory of each individual raindrop; but we do not see how this could help a meteorologist trying

to forecast rain. In real problems, there is a natural end to this resolving, beyond which it serves no

purpose and degenerates into an empty formal exercise. We shall give an explicit demonstration of

this later (Chapter 8), in the scenario of Sam's Broken Thermometer: does the exact way in which

it broke matter for the conclusions that Sam should draw from his corrupted data?

But in some cases there is a resolution so relevant to the context of the problem that it becomes

a useful calculational device; Eq. (2{75) was a trivial example. We shall be glad to take advantage

of this whenever we can, but we cannot expect it in general.

Even when both A and B can be resolved in a way meaningful and useful in our problem,

it would seldom be the case that they are resolvable into the same set of elementary propositions

!i. And we always reserve the right to enlarge our context by introducing more propositions

D;E; F; : : : into the discussion; and we could hardly ever expect that all of them would continue

to be expressible as disjunctions of the same original set of elementary propositions !i. To assume

this would be to place a quite unnecessary restriction on the generality of our theory.

Therefore, the conjunction AB should be regarded simply as the statement that both A and

B are true; it is a mistake to try to read any more detailed meaning, such as an intersection of sets,

into it in every problem. Then p(ABjC) should also be regarded as an elementary quantity in its

own right, not necessarily resolvable into a sum of still more elementary ones (although if it is so

resolvable this may be a good way of calculating it).

We have adhered to the original notation A + B, AB of Boole, instead of the more common

A _ B, A ^ B, or A [ B, A \ B which everyone associates with a set{theory context, in order to

head o� this confusion as much as possible.

So, rather than saying that the Venn diagram justi�es or explains (2{48), we prefer to say that

(2{48) explains and justi�es the Venn diagram, in one special case. But the Venn diagram has

played a major role in the history of probability theory, as we note next.

The \Kolmogorov Axioms" In 1933, A. N. Kolmogorov presented an approach to probability

theory phrased in the language of set theory and measure theory. This language was just then

becoming so fashionable that today many mathematical results are named, not for the discoverer,

but for the one who �rst restated them in that language. For example, in group theory the term

\Hurwitz invariant integral" disappeared, to be replaced by \Haar measure". Because of this

custom, some modern works { particularly by mathematicians { can give one the impression that

probability theory started with Kolmogorov.

Kolmogorov formalized and axiomatized the picture suggested by the Venn diagram, which

we have just described. At �rst glance, this system appears so totally di�erent from ours that

some discussion is needed to see the close relation between them. In Appendix A we describe

the Kolmogorov system and show that, for all practical purposes the four axioms concerning his

probability measure, �rst stated arbitrarily (for which Kolmogorov has been criticized) have all

been derived in this Chapter as necessary to meet our consistency requirements. As a result, we

shall �nd ourselves defending Kolmogorov against his critics on many technical points. The reader

who �rst learned probability theory on the Kolmogorov basis is urged to read Appendix A at this

point.

However, our system of probability di�ers conceptually from that of Kolmogorov in that we do

not interpret propositions in terms of sets. Partly as a result, our system has analytical resources not
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present at all in the Kolmogorov system. This enables us to formulate and solve many problems {

particularly the so{called \ill posed" problems and \generalized inverse" problems { that would

be considered outside the scope of probability theory according to the Kolmogorov system. These

problems are just the ones of greatest interest in current applications.


