BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI SECOND SEMESTER 2015 - 2016

COURSE	: COMPUTER PROGRAMMING (CS F111)		
COMPONENT	: Tutorial# 3 SOLUTIONS	DATE	: 11-FEB-2016

Q1. Using 16 bits, what is the range of signed integers that can be represented in each of the following cases

- a) Sign magnitude -(2¹⁵ -1) to (2¹⁵ -1) i.e -32767 to +32767
- b) 1's Complement -(2¹⁵ -1) to (2¹⁵ -1) i.e -32767 to +32767
- c) 2's Complement -(2¹⁵) to (2¹⁵ -1) i.e -32768 to +32767

Q2. Represent the following in 8 bits 2's Compliment

a) -20 Start with +20 in 8 bits 0001 0100 take 1's Complement 1110 1011 Take 2's Complement 1110 1011 +1 	 b) 15 Start with +15 in 8 bits 0000 1111 For positive numbers the signed binary only will be the 1's C and 2's C 0000 1111
c) -38 Start with +38 in 8 bits 0010 0110 take 1's Complement 1101 1001 Take 2's Complement 1101 1001 +1	

Q3. Find the decimal equivalent for the following 2's Compliment binary number

The MSB (M ost S ignificant B it or left most bit) is 1 therefore the decimal equivalent will be a -ve number.	The MSB (M ost S ignificant B it or left most bit) is 0 therefore the decimal equivalent will be a +ve number.
$(-2^{7}*1) + (2^{6}*1) + (2^{5}*1) +$ $(2^{4}*0) + (2^{3}*1) +$ $(2^{2}*1) + (2^{1}*0) + (2^{0}*1)$ = -20	$(2^{7*0}) + (2^{6*1}) + (2^{5*1}) + (2^{4*0})$ + $(2^{3*1}) + (2^{2*1}) + (2^{1*0}) + (2^{0*1})$ = +109

c) 01 0011

The MSB (**M**ost **S**ignificant **B**it or left most bit) is 0 therefore the decimal equivalent will be a +ve number.

$$(2^{5*0}) + (2^{4*1}) + (2^{3*0}) + (2^{2*0}) + (2^{1*1}) + (2^{0*1})$$

= +19

Q4. Perform the following arithmetic operation and check for the overflow

The operation will be performed as

23+(-15)

The 2's C binary equivalent of 23 is 0001 0111

The 2's C binary equivalent of -15 is 1111 0001

Adding these two will result in **1**-0000 1000 (overflow is not there, but carry forward is there)

The operation will be performed as

(-16)+(-37)

The 2's C binary equivalent of -16 is 1111 0000

The 2's C binary equivalent of -37 is 1101 1011

Adding these two will result in $1-1100\ 1011$ (overflow is not there, but carry forward is there)

Q5. Perform the following conversions

- a) $(00110001100)_2 = (0614)_8 = (396)_{10}$
- **b)** $(1A03)_{16} = (0001 \ 1010 \ 0000 \ 0011 \)_2 = (15003 \)_8$

Q6. Represent the following into IEEE floating point representation

a) -19.75

This is a -ve number so the sign bit will be 1

The binary equivalent to 19 is 10011

The binary equivalent to .75 is 11

So the representation will look like

-10011.11

After normalization it will become

-1.001111 * 24

After adding the biased exponent

-1.001111 * 2⁴⁺¹²⁷

The binary equivalent of exponent 131 is 10000011

So the IEEE representation will be

1 10000011 00111100000000000000000

b) 397.5

This is a +ve number so the sign bit will be 0

The binary equivalent to 397 is 110001101

The binary equivalent to .5 is 1

So the representation will look like

110001101.1

After normalization it will become

1.100011011 * 28

After adding the biased exponent

 $1.100011011 * 2^{8+127}$

The binary equivalent of exponent 135 is 10000111

So the IEEE representation will be

0 10000111 1000110110000000000000

- **Q7.** Draw the flow chart for the following
 - **a)** Arithmetic operations (+, -, *, /)

