BITS PILANI, DUBAI CAMPUS
 DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

SECOND SEMESTER 2015-2016

| COURSE | : COMPUTER PROGRAMMING (CS F111) | |
| :--- | :--- | :--- | :--- |
| COMPONENT | : Tutorial\# 3 SOLUTIONS | DATE $: 11$-FEB-2016 |

Q1. Using 16 bits, what is the range of signed integers that can be represented in each of the following cases
a) Sign magnitude $\left.\mathbf{- (\mathbf { 2 } ^ { 1 5 }} \mathbf{- 1}\right)$ to (2 $\left.\mathbf{2}^{\mathbf{1 5}} \mathbf{- 1}\right)$ i.e -32767 to +32767
b) 1 's Complement $\left.\mathbf{- (2 ^ { 1 5 }} \mathbf{- 1}\right)$ to ($\left.\mathbf{2}^{15} \mathbf{- 1}\right)$ i.e -32767 to +32767
c) $\quad 2$'s Complement $-\left(\mathbf{2}^{15}\right)$ to (2 $\left.\mathbf{2}^{15} \mathbf{- 1}\right)$ i.e -32768 to +32767

Q2. Represent the following in 8 bits 2 's Compliment

a) -20 Start with +20 in 8 bits 00010100 take 1's Complement 11101011 Take 2's Complement 11101011 $+1$ 11101100	b) 15 Start with +15 in 8 bits 00001111 For positive numbers the signed binary only will be the 1's C and 2's C 00001111
```c) -38 Start with +38 in 8 bits 0 0 1 0 0 1 1 0 take 1's Complement 1101 1001 Take 2's Complement 1101 1001 +1 1 1 0 1 1 0 1 0```	

Q3. Find the decimal equivalent for the following 2's Compliment binary number
a) 11101100
b) 01101101

The MSB (Most Significant Bit or left most bit) is 1 therefore the decimal equivalent will be a-ve number.
$\left(-2^{7 *} 1\right)+\left(2^{6 *} 1\right)+\left(2^{5 *} 1\right)+$
$\left(2^{4 *} 0\right)+\left(2^{3 *} 1\right)+$
$\left(2^{2 *} 1\right)+\left(2^{1 *} 0\right)+\left(2^{0 *} 1\right)$
$=-20$
c) 010011

The MSB (Most Significant Bit or left most bit) is 0 therefore the decimal equivalent will be a +ve number.

$$
\begin{aligned}
\left(2^{5 *} 0\right) & +\left(2^{4 *} 1\right)+\left(2^{3 *} 0\right)+\left(2^{2 *} 0\right)+\left(2^{1 *} 1\right)+\left(2^{0 *} 1\right) \\
= & +19
\end{aligned}
$$

Q4. Perform the following arithmetic operation and check for the overflow

$$
\text { a) } 23-15
$$

The operation will be performed as
$23+(-15)$
The 2's C binary equivalent of 23 is 00010111
The 2's C binary equivalent of -15 is 11110001
Adding these two will result in 1-0000 1000 (overflow is not there, but carry forward is there)
b) - $16-37$

The operation will be performed as
$(-16)+(-37)$
The 2's C binary equivalent of -16 is 11110000

The 2's C binary equivalent of -37 is 11011011
Adding these two will result in 1-1100 1011 (overflow is not there, but carry forward is there)

Q5. Perform the following conversions
a) $(00110001100)_{2}=(\mathbf{0 6 1 4})_{8}=(\mathbf{3 9 6})_{10}$
b) $(1 \mathrm{~A} 03)_{16}=(0001101000000011)_{2}=(\mathbf{1 5 0 0 3})_{8}$

Q6. Represent the following into IEEE floating point representation
a) $\mathbf{- 1 9 . 7 5}$

This is a -ve number so the sign bit will be 1
The binary equivalent to 19 is 10011
The binary equivalent to .75 is 11
So the representation will look like
-10011.11
After normalization it will become

$$
-1.001111 * 2^{4}
$$

After adding the biased exponent
$-1.001111 * 2^{4+127}$
The binary equivalent of exponent 131 is 10000011
So the IEEE representation will be

## 11000001100111100000000000000000

## b) $\mathbf{3 9 7 . 5}$

This is a +ve number so the sign bit will be 0
The binary equivalent to 397 is 110001101
The binary equivalent to .5 is 1
So the representation will look like
110001101.1

After normalization it will become
1.100011011 * $2^{8}$

After adding the biased exponent

## $1.100011011 * 2^{8+127}$

The binary equivalent of exponent 135 is 10000111
So the IEEE representation will be
01000011110001101100000000000000

Q7. Draw the flow chart for the following
a) Arithmetic operations (+,-, *, /)

b) Reverse a given number


Read n

$\qquad$

