CS/ECE/EEE/INSTR F241 – MICROPROCESSOR PROGRAMMING & INTERFACING

MODULE 7: MEMORY INTERFACING QUESTIONS

ANUPAMA KR BITS, PILANI – KK BIRLA GOA CAMPUS

- **Q1.** An 8086 based system has the following memory requirements:
 - 256K of ROM from 00000_{H}
 - 256K of ROM from $C0000_H$
 - 256K of RAM from 60000_{H} .

Chips available:

64K ROM -8, 64K RAM -4, LS138-2. Design the memory Interfacing circuit.

- **Q2.** For an 80286 processor that has 16 MB of memory of which 4M is ROM and the rest is RAM. Half of the ROM mapped to address space starting at 00 00 00_H Half to address space starting from E0 00 00_H. The RAM is mapped continuously from address 20 00 00_H. Design the memory Interfacing circuit.
- **Q3.** For an 8086 based system with the following memory requirements:

 SRAM:
 16KB from
 02000_H

 ROM:
 16 KB from
 09000_H

The following chips are available

- SRAM- 2K x 8bit ROM- 2K x 8bit
- 74138 decoders (4 numbers)

Using these decoders and minimum number of logic gates draw the memory interfacing diagram

Q4. An 8086 system has the following memory requirements:

384K of ROM from 00000_H 384K of ROM from A0000_H 256K of RAM from 60000_H The following chips are available 32K ROM -24 32K RAM - 8 LS138 -4

Design the memory Interfacing circuit.

- **Q5.** Design an 80286 based system that has the following memory requirements:
 - M of ROM from 00000_H
 M of ROM from 800000_H
 M of ROM from F00000_H
 M of RAM from 100000_H
 M of RAM from 90000_H

Chips available:

512K ROM chip	6 nos.
512K RAM chip	20 nos.
LS138	4 nos.

Show the complete memory mapping and design the memory decoding circuit <u>using only the</u> <u>chips given</u>. All system bus signals (MEMR', MEMW', IOR', IOW' BHE', A_0 - A_{23} , D_0 - D_{16}) are available. Show the memory interfacing circuit. **Use absolute addressing.**

Q6. A **System** is built around the 8086 processor which is working at a frequency of 5 MHz. It has 640 KB of memory – of which 256 K is ROM and the rest is RAM – Half of the ROM is mapped to address space starting at 0 00 00_{H} and half it to address space starting from E 00 00_{H} The RAM 128 K is mapped from 4 00 00_{H} and the rest from address 8 00 00_{H} .

Show the complete memory mapping and design the memory interfacing circuit <u>using only the</u> <u>chips given in table below</u>. All system bus signals (MEMR', <u>MEMW'</u>, <u>IOR'</u>, <u>IOW'</u>, BHE', A₀- A₁₉, D₀- D₁₅) are available. Use Absolute Addressing.

Chips Available	Nos.
64 K ROM	4
64 K RAM	6
LS138	2

Q7. 80286-based system has the following memory requirements

576KB of memory	_	
128KB	ROM	
rest	RAM	
The mapping is as follow	ws	
64 K ROM	000000 _H	
64 K ROM	0F0000 _H	
RAM	040000 _H	
System is expandable in nature.		
Chips available:		
27256	4 nos.	
61256	14 nos.	
Inverter	1	
LS138	4 nos	
4-input OR gate	es 1	
Design the memory into	erfacing circuit.	

Q8. For an 80386 system with the following memory requirements - 1 M SRAM - 04 00 00 00_H

The SRAM chip available is MS621000 128 K x 8. The memory interfacing has to be done using GAL22V10C. (Refer to corresponding video for details of GAL22V10C)

1. **Q9.** The decoding logic (**using absolute addressing**) for an 8086 processor is shown below. This is the only decoding circuit in the computing system and the rest of the address lines are used with the memory chips. (Pin out of this decoder is same as the one given in Lecture 1 of Module 7)

A ₁₇	А	O_0	ROM1E CS'	A ₁₇	А	O ₀	ROM10 CS'
A ₁₆	В	O_1	ROM2E CS'	A ₁₆	В	O_1	ROM2O CS'
A ₁₅	С	O ₂	ROM3E CS'	A ₁₅	С	O ₂	ROM3O CS'
	LS 138	O ₃	RAM1E CS'		LS 138	O ₃	RAM10 CS'
A ₁₉	G1	O_4	RAM2E CS'	A ₁₉	G1	O ₄	RAM2O CS'
A ₁₈	G' _{2A}	O ₅	RAM3E CS'	A ₁₈	G' _{2A}	O ₅	RAM3O CS'
A ₀	G'2B	O ₆	RAM4E CS'	BHE'	G' _{2B}	O ₆	RAM4O CS'
		O ₇	RAM5E CS'			O ₇	RAM5O CS'

Answer the following questions

How much memory does the system have? How much of this memory is RAM? What is the size of the RAM and ROM Chips used? What is the memory map?

Memory Chips	Address [Starting Address- Ending Address]	Memory Chips	Address [Starting Address- Ending Address]
ROM1		RAM2	
ROM2		RAM3	
ROM3		RAM4	
RAM1		RAM5	