8-Bit μ P Compatible A/D Converters

Check for Samples: ADC0801, ADC0802, ADC0803, ADC0804, ADC0805

FEATURES

- Compatible with $\mathbf{8 0 8 0} \boldsymbol{\mu P}$ derivatives - no interfacing logic needed - access time 135 ns
- Easy interface to all microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
- Works with 2.5V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required
- 0.3" standard width 20-pin DIP package
- 20-pin molded chip carrier or small outline package
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference

KEY SPECIFICATIONS

- Resolution: 8 Bits
- Total error: $\pm 1 / 4$ LSB, $\pm 1 / 2$ LSB and ± 1 LSB
- Conversion Time: $100 \mu \mathrm{~s}$

DESCRIPTION

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters that use a differential potentiometric ladder - similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.

Differential analog voltage inputs allow increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

CONNECTION DIAGRAM

ADC080X
Dual-In-Line and Small Outline (SO) Packages See Ordering Information

Table 1. ORDERING INFORMATION

TEMP RANGE		$0^{\circ} \mathrm{C}$ TO $70{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$
	$\pm 1 / 4$ Bit Adjusted			ADC0801LCN
ERROR	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCWM		ADC0802LCN
	$\pm 1 / 2$ Bit Adjusted			ADC0803LCN
	± 1 Bit Unadjusted	ADC0804LCWM	ADC0804LCN	ADC0805LCN/ADC0804LCJ
PACKAGE OUTLINE		M20B - Small Outline	N20A - Molded DIP	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TYPICAL APPLICATIONS

ERROR SPECIFICATION (Includes Full-Scale, Zero Error, and Non-Linearity)			
PART NUMBER	FULL-SCALE ADJUSTED	$\mathbf{V}_{\text {REF }} / \mathbf{2}=\mathbf{2 . 5 0 0} \mathrm{V}_{\mathrm{DC}}$ (No Adjustments)	$\mathbf{V}_{\text {REF }} / \mathbf{2}=$ No Connection (No Adjustments)
ADC0801	$\pm 1 / 4$ LSB		
ADC0802		$\pm 1 / 2 \mathrm{LSB}$	
ADC0803	$\pm 1 / 2 \mathrm{LSB}$		
ADC0804		$\pm 1 \mathrm{LSB}$	
ADC0805			$\pm 1 \mathrm{LSB}$

ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

		VALUE	UNIT
Supply voltage ($\left.\mathrm{V}_{\mathrm{CC}}\right)^{(1)}$		6.5	V
	Logic control inputs	-0.3 to +18	V
Volage	At other input and outputs	-0.3 to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
	Dual-In-Line Package (plastic	260	${ }^{\circ} \mathrm{C}$
Lead Temperature	Dual-In-Line Package (ceramic)	300	${ }^{\circ} \mathrm{C}$
(Soldering, 10 seconds)	Surface Mount Package Vapor Phase (60 seconds)	215	${ }^{\circ} \mathrm{C}$
	Infrared (15 seconds)	220	${ }^{\circ} \mathrm{C}$
Storage Temperature Ra		-65 to +150	${ }^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}^{\text {a }}$		875	mW
ESD Susceptibility ${ }^{(2)}$		800	V

(1) A zener diode exists, internally, from V_{CC} to GND and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
(2) Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
www.ti.com
SNOSBI1B -NOVEMBER 2009-REVISED FEBRUARY 2013

OPERATING RATINGS ${ }^{(1)(2)}$

over operating free-air temperature range (unless otherwise noted)

Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$
ADC0804LCJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC0801/02/03/05LCN	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
ADC0804LCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
ADC0802/04LCWM	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Range of $\mathrm{V}_{\text {CC }}$	$4.5 \mathrm{~V}_{D C}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$

1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
(2) All voltages are measured with respect to GND, unless otherwise specified. The separate A GND point should always be wired to the D GND.

ELECTRICAL CHARACTERISTICS

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ and $\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$ (unless otherwise specified).

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ADC0801: Total Adjusted Error ${ }^{(1)}$	With Full-Scale Adj. (See Full-Scale)			$\pm 1 / 4$	LSB
ADC0802: Total Unadjusted Error ${ }^{(1)}$	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error ${ }^{(1)}$	With Full-Scale Adj.(See Full-Scale)			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error ${ }^{(1)}$	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{VDC}$			± 1	LSB
ADC0805: Total Unadjusted Error ${ }^{(1)}$	V $\mathrm{REF}^{\text {/2-No Connection }}$			± 1	LSB
	ADC0801/02/03/05	2.5	8		$k \Omega$
VREF/2 Input Resistance (Pin 9)	ADC0804 ${ }^{(2)}$	0.75	1.1		
Analog Input Voltage Range	$\mathrm{V}(+)$ or $\mathrm{V}(-)^{(3)}$	$\begin{array}{r} \text { GND-0.0 } \\ 5 \end{array}$	$V_{C C}+0.05$		V_{DC}
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$ Over Allowed $\mathrm{V}_{\mathrm{IN}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$ Voltage Range ${ }^{(3)}$		$\pm 1 / 16$	$\pm 1 / 8$	LSB

(1) None of these A/Ds requires a zero adjust (see Zero Error). To obtain zero code at other analog input voltages see Errors and Reference Voltage Adjustments and Figure 51.
(2) The $\mathrm{V}_{\text {REF }} / 2$ pin is the center point of a two-resistor divider connected from V_{CC} to ground. In all versions of the ADC0801, ADC0802, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically $16 \mathrm{k} \Omega$. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically $2.2 \mathrm{k} \Omega$.
(3) For $\mathrm{V}_{\mathrm{IN}}(-) \geq \mathrm{VIN}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $\mathrm{V}_{\text {cc }}$ supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.

AC ELECTRICAL CHARACTERISTICS

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$ (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
T_{C}	Conversion Time	$\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}{ }^{(1)}$	103		114	$\mu \mathrm{s}$
		See ${ }^{(2)(1)}$	66		73	1/fCLK
${ }^{\text {f CLK }}$	Clock Frequency	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{(2)}$	100	640	1460	kHz
	Clock Duty Cycle		40\%		60\%	
CR	Conversion Rate in Free-Running Mode	INTR tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{VDC}$, $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	8770		9708	conv/s
$\mathrm{t}_{\mathrm{W}(\overline{\mathrm{WR}}) \mathrm{L}}$	Width of $\overline{\mathrm{WR}}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{VDC}{ }^{(3)}$	100			ns
tACC	Access Time (Delay from Falling Edge of RD to Output Data Valid)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
t1H, t0H	TRI-STATE Control (Delay from Rising Edge of RD to Hi-Z State)	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { (See TRI-STATE }$ TEST CIRCUITS AND WAVEFORMS)		125	200	ns
$\mathrm{t}_{\mathrm{WI}}, \mathrm{t}_{\mathrm{RI}}$	Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of INTR			300	450	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
Cout	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

$\mathrm{V}_{\text {IN }}(1)$	Logical "1" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{VDC}$	2	15	$V_{D C}$
$\mathrm{V}_{\text {IN }}(0)$	Logical "0" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{VDC}$		0.8	$V_{D C}$
$\mathrm{I}_{\mathrm{N}}(1)$	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{VDC}$	0.005	1	$\mu \mathrm{A}_{\text {DC }}$
$\mathrm{l}_{\mathrm{N}}(0)$	Logical "0" Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=0 \mathrm{VDC}$	-1 -0.005		$\mu \mathrm{A}_{\text {DC }}$

CLOCK IN AND CLOCK R

$\mathrm{V}_{\mathrm{T}+}$	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$\mathrm{V}^{-}{ }^{-}$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
V_{H}			0.6	1.3	2	$V_{D C}$
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" CLK R Output Voltage	$\mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{VDC}$			0.4	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$ (1)	Logical "1" CLK R Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{VDC}$	2.4			$V_{D C}$

DATA OUTPUTS AND INTR

$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" Output Voltage Data Outputs INTR Output	$\begin{aligned} & \text { lout }=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\text {OUT }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			0.4 0.4	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4			V_{DC}
		$\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	4.5			$V_{D C}$
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{VDC}$	-3			$\mu A_{D C}$
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{VDC}$			3	$\mu \mathrm{A}_{\text {DC }}$
Isource		$\mathrm{V}_{\text {OUT }}$ Short to GND, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	9	16		$m A_{D C}$
POWER SUPPLY						
I_{CC}	Supply Current (Includes Ladder Current)	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}, \mathrm{~V}_{\mathrm{REF}} / 2=\mathrm{NC}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } \overline{\mathrm{CS}}=5 \mathrm{~V} \end{aligned}$				
	ADC0801/02/03/04LCJ/05			1.1	1.8	mA
	ADC0804LCN/LCWM			1.9	2.5	mA

(1) Accuracy is specified at $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.
(2) With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 48 and FUNCTIONAL DESCRIPTION.
(3) The $\overline{C S}$ input is assumed to bracket the $\overline{W R}$ strobe input and therefore timing is dependent on the WR pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{W R}$ pulse (see TIMING DIAGRAMS).
www.ti.com
SNOSBI1B -NOVEMBER 2009-REVISED FEBRUARY 2013

TYPICAL CHARACTERISTICS

Figure 1.
CLK IN Schmitt Trip Levels vs Supply Voltage

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

TYPICAL CHARACTERISTICS (continued)

Figure 7.

Figure 8.

Figure 9.
(1) The $V_{R E F} / 2$ pin is the center point of a two-resistor divider connected from $V_{C C}$ to ground. In all versions of the $A D C 0801$, $A D C 0802$, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically $16 \mathrm{k} \Omega$. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically $2.2 \mathrm{k} \Omega$.

TRI-STATE TEST CIRCUITS AND WAVEFORMS

TIMING DIAGRAMS

All timing is measured from the 50% voltage points

Note: Read strobe must occur 8 clock periods $\left(8 / f_{\text {cLK }}\right)$ after assertion of interrupt to specify reset of $\overline{\text { INTR }}$.
Figure 10. Ouatput Enable and Reset with $\overline{\mathrm{N} T R}$

TYPICAL APPLICATIONS

Figure 11. 6800 Interface

Note: before using caps at V_{IN} or $\mathrm{V}_{\text {REF }} / 2$, see section Input Bypass Capacitors.

Figure 13. Ratiometeric with Full-Scale Adjust

*For low power, see also LM385-2.5
Figure 12. Absolute with a 2.500 V Reference

Figure 14. Absolute with a 5V Reference

Figure 15. Zero-Shift and Span Adjust: $2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}$

TYPICAL APPLICATIONS (continued)

Figure 16. Span Adjust: $\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V}$

$\mathrm{V}_{\mathrm{REF}} / 2=256 \mathrm{mV}$
Figure 17. Directly Converting a Low-Level Signal

For: $\mathrm{V}_{\mathrm{IN}}(+)>\mathrm{V}_{\mathrm{IN}}(-)$; Output $=\mathrm{FF}_{\text {HEX }}$
For: $\mathrm{V}_{\mathrm{IN}}(+)<\mathrm{V}_{\mathrm{IN}}(-)$; Output $=00_{\text {HEX }}$
Figure 18. $\mathrm{A} \mu \mathrm{P}$ Interfaced Comparator

TYPICAL APPLICATIONS (continued)

$\mathrm{V}_{\mathrm{REF}} / 2=128 \mathrm{mV} ; 1 \mathrm{LSB}=1 \mathrm{mV} ; \mathrm{V}_{\mathrm{DAC}} \leq \mathrm{V}_{\mathrm{IN}} \leq\left(\mathrm{V}_{\mathrm{DAC}}+256 \mathrm{mV}\right) ; 0 \leq \mathrm{V}_{\mathrm{DAC}}<2.5 \mathrm{~V}$
Figure 19. 1 mV Resolution with $\mu \mathrm{P}$ Controlled Range

Figure 20. Digitizing a Current Flow

* Use a large R value to reduce loading at CLK R output.

Figure 21. Self-Clocking Multiple A/Ds

TYPICAL APPLICATIONS (continued)

*After power-up, a momentary grounding of the WR input is needed to ensure operation.

Figure 22. Self-Clocking in Free-Running Mode

$100 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{CLK}} \leq 1460 \mathrm{kHz}$

Figure 23. $\mu \mathrm{P}$ Interface for Free-Running A/D

${ }^{*} \mathrm{VIN}^{(-)}=0.15 \mathrm{~V}_{\mathrm{CC}}$
15% of $\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{XDR}} \leq 85 \%$ of V_{CC}
Figure 25. Operating with "Automotive" Ratiometric

Figure 24. External clocking

Figure 26. Ratiometric with $\mathrm{V}_{\text {REF }} / \mathbf{2}$ Forced

TYPICAL APPLICATIONS (continued)

*See Figure 48 to select R value $D B 7=" 1$ " for $\mathrm{V}_{\mathrm{IN}}(+)>\mathrm{V}_{\mathrm{IN}}(-)+\left(\mathrm{V}_{\mathrm{REF}} / 2\right)$. Omit circuitry within the dotted area if hysteresis is not needed.
Figure 27. μ P Compatible Differential-Input Comparator with Pre-Set VOS (with or without Hysteresis)

*Beckman Instruments \#694-3-R10K resistor array
Figure 28. Handling $\pm 10 \mathrm{~V}$ Analog Inputs

Figure 29. Low-Cost, $\mu \mathrm{P}$ Interfaced, Temperature-to-Digital Converter

${ }^{*}$ Circuit values shown are for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+128^{\circ} \mathrm{C}$
**Can calibrate each sensor to allow easy replacement, then A / D can be calibrated with a pre-set input voltage.
Figure 30. $\mu \mathrm{P}$ Interfaced Temperature-to-Digital Converter

TYPICAL APPLICATIONS (continued)

*Beckman Instruments \#694-3-R10K resistor array
Figure 31. Handling $\pm 5 \mathrm{~V}$ Analog Inputs

Figure 32. Read-Only Interface

Figure 33. $\mu \mathrm{P}$ Interfaced Comparator with Hysteresis

TYPICAL APPLICATIONS (continued)

Diodes are 1N914

Figure 34. Protecting the Input

Figure 35. Analog Self-Test for a System

*LM389 transistors A, B, C, D = LM324A quad op amp
Figure 36. A Low-Cost, 3-Decade Logarithmic Converter

TYPICAL APPLICATIONS (continued)

$\mathrm{f}_{\mathrm{C}}=20 \mathrm{~Hz}$
Uses Chebyshev implementation for steeper roll-off unity-gain, 2nd order, low-pass filter
Adding a separate filter for each channel increases system response time if an analog multiplexer is used
Figure 37. 3-Decade Logarithmic A/D Converter

Figure 38. Noise Filtering the Analog Input

Figure 40. Multiplexing Differential Inputs

*A/D output data is updated 1 CLK period prior to assertion of $\overline{\text { NTR }}$ Figure 39. Output Buffers with A/D Data Enabled

*Allows output data to set-up at falling edge of $\overline{C S}$
Figure 41. Increasing Bus Drive and/or Reducing Time on Bus

TYPICAL APPLICATIONS (continued)

(1) Oversample whenever possible [keep fs $>2 f(-60)$] to eliminate input frequency folding (aliasing) and to allow for the skirt response of the filter.
(2) Consider the amplitude errors which are introduced within the passband of the filter.

Figure 42. Sampling an AC Input Signal

(Complete shutdown takes ≈ 30 seconds.)
Figure 43. 70\% Power Savings by Clock Gating

*Use ADC0801, 02, 03 or 05 for lowest power consumption.
Note: Logic inputs can be driven to V_{CC} with A / D supply at zero volts.
Buffer prevents data bus from overdriving output of A / D when in shutdown mode.
Figure 44. Power Savings by A / D and $V_{\text {Ref }}$ Shutdown

FUNCTIONAL DESCRIPTION

Understanding A/D Error Specs

A perfect A / D transfer characteristic (staircase waveform) is shown in Figure 45. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the VREF/2 pin). The digital output codes that correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect A / D, not only will center- value ($\mathrm{A}-1, \mathrm{~A}, \mathrm{~A}+1, \ldots$) analog inputs produce the cor- rect output digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages that extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage that provides the same digital output code) is therefore 1 LSB wide.
Figure 46 shows a worst case error plot for the ADC0801. All center-valued inputs are guaranteed to produce the correct output codes and the adjacent risers are specified to be no closer to the center-value points than $\pm 1 / 4$ LSB. In other words, if we apply an analog input equal to the center-value $\pm 1 / 4$ LSB, we guarantee that the A/D will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is specified to be no more than $1 / 2$ LSB.
The error curve of Figure 47 shows a worst case error plot for the ADC0802. Here we guarantee that if we apply an analog input equal to the LSB analog voltage center-value the A/D will produce the correct digital code.
Next to each transfer function is shown the corresponding error plot. Many people may be more familiar with error plots than transfer functions. The analog input voltage to the A / D is provided by either a linear ramp or by the discrete output steps of a high resolution DAC. Notice that the error is continuously displayed and includes the quantization uncertainty of the A/D. For example the error at point 1 of Figure 45 is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt up- side steps are always 1 LSB in magnitude.

Figure 45. Clarifying the Error Specs of an A/D Converter Accuracy= ± 0 LSB: A Perfect A/D

Figure 46. Clarifying the Error Specs of an A/D Converter Accuracy = $\pm 1 / 4$ LSB

Figure 47. Clarifying the Error Specs of an A/D Converter Accuracy $= \pm 1 / 2$ LSB

Functional Description

The ADC0801 series contains a circuit equivalent of the 256R network. Analog switches are sequenced by successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\text {IN }}(+)-\mathrm{V}_{\mathrm{IN}}(-)\right]$ to a corresponding tap on the R network. The most significant bit is tested first and after 8 comparisons (64 clock cycles) a digital 8bit binary code (1111 1111 = full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). A conversion in process can be interrupted by issuing a second start command. The device may be operated in the free-running mode by connecting INTR to the $\overline{W R}$ input with $\overline{C S}=0$. To ensure start-up under all possible conditions, an external WR pulse is required during the first power-up cycle.
On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition.
A functional diagram of the A/D converter is shown in Figure 48. All of the package pinouts are shown and the major logic control paths are drawn in heavier weight lines.
The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either WR or $\overline{C S}$ is a " 1 ") the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would momentarily be at a "1" level) and the 8-bit shift register would continue to be held in the reset mode. This logic therefore allows for wide CS and WR signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.

(1) $\overline{\mathrm{CS}}$ shown twice for clarity.
(2) $\mathrm{SAR}=$ Successive Approximation Register.

Figure 48. Block Diagram
After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR search) it appears as the input to the D-type latch, LATCH 1. As soon as this "1" is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the TRI-STATE output latches. When LATCH 1 is subsequently enabled, the Q output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR input signal.
Note that this SET control of the INTR F/F remains low for 8 of the external clock periods (as the internal clocks run at $1 / 8$ of the frequency of the external clock). If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the INTR output will still signal the end of conversion (by a high-to-low transition), because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a M "1M" level in this operating mode. This INTR output will therefore stay low for the duration of the SET signal, which is 8 periods of the external clock frequency (assuming the A / D is not started during this interval).
When operating in the free-running or continuous conversion mode (INTR pin tied to $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ wired low - see Continuous Conversions), the START F/F is SET by the high-to-low transition of the INTR signal. This resets the SHIFT REGISTER which causes the input to the D-type latch, LATCH 1, to go low. As the latch enable input is still present, the \bar{Q} output will go high, which then allows the INTR F/F to be RESET. This reduces the width of the resulting $\overline{\mathbb{N T R}}$ output pulse to only a few propagation delays (approximately 300 ns).
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled to provide the 8 -bit digital outputs.

Digital Control Inputs

The digital control inputs ($\overline{\mathrm{CS}}, \mathrm{RD}$, and $\overline{\mathrm{WR}}$) meet standard $\mathrm{T}^{2} \mathrm{~L}$ logic voltage levels. These signals have been renamed when compared to the standard A/D Start and Output Enable labels. In addition, these inputs are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A/D Start function is obtained by an active low pulse applied at the $\overline{W R}$ input (pin 3) and the Output Enable function is caused by an active low pull at the $\overline{R D}$ input (pin 2).

Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D has additional applications flexibility due to the analog differential voltage input. The $\mathrm{V}_{\mathrm{IN}}(-)$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, common-mode noise can be reduced by use of the differential input.
The time interval between sampling $\mathrm{V}_{\mathbb{N}}(+)$ and $\mathrm{V}_{\mathbb{I N}}(-)$ is $4-1 / 2$ clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{e}}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{P}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left(\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right) \tag{1}
\end{equation*}
$$

Where:
$\Delta \mathrm{V}_{\mathrm{e}}$ is the error voltage due to sampling delay
V_{P} is the peak value of the common-mode voltage
f_{cm} is the common-mode frequency
As an example, to keep this error to $1 / 4 \mathrm{LSB}(\sim 5 \mathrm{mV})$ when operating with a 60 Hz common-mode frequency, f_{cm}, and using a 640 kHz A/D clock, $\mathrm{f}_{\mathrm{CLL}}$, would allow a peak value of the common-mode voltage, V_{p}, which is given by:

$$
\begin{equation*}
V_{P}=\frac{\left[\Delta \mathrm{V}_{\mathrm{e}(\mathrm{MAX})}\left(\mathrm{f}_{\mathrm{CLK}}\right)\right]}{\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)(4.5)} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
V_{P}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \tag{3}
\end{equation*}
$$

which gives $\mathrm{V}_{\mathrm{p}}-1.9 \mathrm{~V}$.
The allowed range of analog input voltages usually places more severe restrictions on input common-mode noise levels.
An analog input voltage with a reduced span and a relatively large zero offset can be handled easily by making use of the differential input (see Reference Voltage).

Analog Inputs - Input Current

Normal Mode

Due to the internal switching action, displacement currents will flow at the analog inputs. This is due to on-chip stray capacitance to ground as shown in Figure 49.

$r_{\text {ON }}$ of SW 1 and SW $2.5 \mathrm{k} \Omega$
$r=r_{O N} C_{\text {STRAY }} \times 5 \mathrm{k} \Omega \times 12 \mathrm{pF}=60 \mathrm{~ns}$
Figure 49. Analog Input Impedance
The voltage on this capacitance is switched and will result in currents entering the $\mathrm{V}_{\mathbb{N}}(+)$ input pin and leaving the $\mathrm{V}_{\mathbb{I N}}(-)$ input which will depend on the analog differential input voltage levels. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not cause errors as the on-chip comparator is strobed at the end of the clock period.

Fault Mode

If the voltage source applied to the $\mathrm{V}_{\mathbb{N}}(+)$ or $\mathrm{V}_{\mathbb{I N}}(-)$ pin exceeds the allowed operating range of $\mathrm{V}_{\mathrm{CC}}+50 \mathrm{mV}$, large input currents can flow through a parasitic diode to the V_{CC} pin. If these currents can exceed the 1 mA max allowed spec, an external diode (1N914) should be added to bypass this current to the V_{Cc} pin (with the current bypassed with this diode, the voltage at the $\mathrm{V}_{\mathbb{I}}(+)$ pin can exceed the V_{CC} voltage by the forward voltage of this diode).

Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathbb{N}}(+)$ input voltage at full-scale. For continuous conversions with a 640 kHz clock frequency with the $\mathrm{V}_{\mathbb{N}}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{\text {REF }} / 2$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage.

Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent noise pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor - both the R and C are placed outside the feedback loop - from the output of an op amp, if used.

Noise

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate system noise pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A/D (see Analog Inputs - Input Current). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be eliminated by doing a full-scale adjustment of the A / D (adjust $V_{\text {REF }} / 2$ for a proper full-scale reading - see Full-Scale) with the source resistance and input bypass capacitor in place.

Reference Voltage

Span Adjust

For maximum applications flexibility, these A / Ds have been designed to accommodate a $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 50.

Figure 50. The $\mathrm{V}_{\text {Reference }}$ Design on the IC
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage applied to the V_{CC} supply pin, or is equal to the voltage that is externally forced at the $\mathrm{V}_{\text {REF }} / 2$ pin. This allows for a ratiometric voltage reference using the $\mathrm{V}_{C C}$ supply, a $5 \mathrm{~V}_{\mathrm{DC}}$ reference voltage can be used for the $\mathrm{V}_{C C}$ supply or a voltage less than $2.5 \mathrm{~V}_{\mathrm{DC}}$ can be applied to the $\mathrm{V}_{\text {REF }} / 2$ input for increased application flexibility. The internal gain to the $\mathrm{V}_{\text {REF }} / 2$ input is 2 , making the full-scale differential input voltage twice the voltage at pin 9 .
An example of the use of an adjusted reference voltage is to accommodate a reduced span - or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $3.5 \mathrm{~V}_{\mathrm{DC}}$, instead of 0 V to $5 \mathrm{~V}_{\mathrm{DC}}$, the span would be 3 V as shown in Figure 51 . With 0.5 vDC applied to the $\mathrm{V}_{\mathrm{IN}}(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 VDC . The A/D now will encode the $\mathrm{V}_{\mathbb{I N}}(+)$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 VDC input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range.

Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. The ADC0805 is specified particularly for use in ratiometric applications with no adjustments required. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important factors in the accuracy of the A / D converter. For $\mathrm{V}_{\mathrm{REF}} / 2$ voltages of $2.4 \mathrm{~V}_{\mathrm{DC}}$ nominal value, initial errors of $\pm 10 \mathrm{mV}$ DC will cause conversion errors of ± 1 LSB due to the gain of 2 of the $\mathrm{V}_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.

In general, the magnitude of the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. The LM336B 2.5 V IC reference diode (from National Semiconductor) has a temperature stability of 1.8 mV typ (6 mV max) over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. Other temperature range parts are also available.

a) Analog Input Signal Example

*Add if VREF/2 ≤ 1 VDC with LM358 to draw 3 mA to ground.
b) Accommodating an Analog Input from 0.5 V (Digital Out $=00_{\text {HEX }}$) to 3.5 V (Digital Out=FF ${ }_{\text {HEX }}$)

Figure 51. Adapting the A/D Analog Input Voltages to Match an Arbitrary Input Signal Range

Errors and Reference Voltage Adjustments

Zero Error

The zero of the A / D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathbb{I N}(\mathrm{MiN})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{I N}(-)$ input at this $\mathrm{V}_{\mathrm{IN}}(\mathrm{MIN})$ value (see Applications section). This utilizes the differential mode operation of the A / D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathbb{I}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathbb{I N}}(+)$ input. Zero error is the difference between the actual DC input voltage that is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$).

Full-Scale

The full-scale adjustment can be made by applying a differential input voltage that is $11 / 2$ LSB less than the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9 or the V_{CC} supply if pin 9 is not used) for a digital output code that is just changing from 11111110 to 11111111.

Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal that does not go to ground) this new zero reference should be properly adjusted first. $\mathrm{A} \mathrm{V}_{\mathrm{IN}}(+)$ voltage that equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1 LSB=analog span/256) is applied to pin 6 and the zero reference voltage at pin 7 should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.

The full-scale adjustment should then be made (with the proper $\mathrm{V}_{\mathbb{I N}}(-)$ voltage applied) by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right] \tag{4}
\end{equation*}
$$

where:
$\mathrm{V}_{\text {MAX }}=$ The high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\text {REF }} / 2$ (or V_{CC}) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure

Clocking Option

The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide selfclocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 52.

$$
\mathrm{f}_{\mathrm{CLK}}=\frac{1}{R C \ln \left[\left(\frac{\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{T}^{-}}}{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{T}^{+}}}\right)\left(\frac{\mathrm{V}_{\mathrm{T}^{+}}}{\mathrm{V}_{\mathrm{T}^{-}}}\right)\right]}
$$

$R \cong 10 \mathrm{k} \Omega$

Figure 52. Self-Clocking the A/D
Heavy capacitive or DC loading of the clock R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to $7 \mathrm{~A} / \mathrm{D}$ converter clock inputs from a single clock R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the clock R pin (do not use a standard TTL buffer).

Restart During a Conversion

If the A / D is restarted ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in process is not allowed to be completed, therefore the data of the previous conversion remains in this latch. The INTR output simply remains at the " 1 " level.

Continuous Conversions

For operation in the free-running mode an initializing pulse should be used, following power-up, to ensure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the INTR output. This $\overline{\mathrm{WR}}$ and INTR node should be momentarily forced to logic low following a power-up cycle to ensure operation.

Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in TRI-STATE (high impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see typical characteristics curves).
At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be TRISTATE buffers (low power Schottky such as the DM74LS240 series is recommended) or special higher drive current products which are designed as bus drivers. High current bipolar bus drivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V_{CC} supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter V_{CC} pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO$92,5 \mathrm{~V}$ voltage regu- lator for the converter (and other analog circuitry) will greatly reduce digital noise on the V_{CC} supply.

Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used and all logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup, therefore shielded leads may be necessary in many applications.
A single point analog ground that is separate from the logic ground points should be used. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see Zero Error for measuring the zero error).

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with test- ing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 53.
For ease of testing, the $\mathrm{V}_{\text {REF }} / 2(\mathrm{pin} 9)$ should be supplied with $2.560 \mathrm{~V}_{\mathrm{DC}}$ and a V_{CC} supply voltage of $5.12 \mathrm{~V}_{\mathrm{DC}}$ should be used. This provides an LSB value of 20 mV .
If a full-scale adjustment is to be made, an analog input voltage of $5.090 \mathrm{~V}_{\mathrm{DC}}(5.120-1 / 2 \mathrm{LSB}$) should be applied to the $\mathrm{V}_{\mathbb{I N}}(+)$ pin with the $\mathrm{V}_{\mathbb{I N}}(-)$ pin grounded. The value of the $\mathrm{V}_{\text {REF }} / 2$ input voltage should then be adjusted until the digital output code is just changing from 11111110 to 11111111 . This value of $\mathrm{V}_{\text {REF }} / 2$ should then be used for all the tests.
The digital output LED display can be decoded by dividing the 8 bits into 2 hex characters, the 4 most significant (MS) and the 4 least significant (LS). Table 2 shows the fractional binary equivalent of these two 4 -bit groups. By adding the voltages obtained from the "VM" and "VLS" columns in Table 2 , the nominal value of the digital display (when $\mathrm{V}_{\mathrm{REF}} / 2=2.560 \mathrm{~V}$) can be determined. For example, for an output LED display of 10110110 or B6 (in hex), the voltage values from the table are $3.520+0.120$ or $3.640 \mathrm{~V}_{\mathrm{DC}}$. These voltage values represent the center-values of a perfect A / D converter. The effects of quantization error have to be accounted for in the interpretation of the test results.

Figure 53. Basic A/D Tester
For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test setup. An accurate 10-bit DAC can serve as the precision voltage source for the A/D. Errors of the A/D under test can be expressed as either analog voltages or differences in 2 digital words.
A basic A/D tester that uses a DAC and provides the error as an analog output voltage is shown in Figure 52. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to read the difference voltage, "A-C", directly. The analog input voltage can be supplied by a low frequency ramp generator and an $\mathrm{X}-\mathrm{Y}$ plotter can be used to provide analog error (Y axis) versus analog input (X axis).
For operation with a microprocessor or a computer-based test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 55, where the output code transitions can be detected as the 10-bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

MICROPROCESSOR INTERFACING

To dicuss the interface with 8080A and 6800 microprocessors, a common sample subroutine structure is used. The microprocessor starts the A/D, reads and stores the results of 16 successive conversions, then returns to the user's program. The 16 data bytes are stored in 16 successive memory locations. All Data and Addresses will be given in hexadecimal form. Software and hardware details are pro- vided separately for each type of microprocessor.

Interfacing 8080 Microprocessor Derivatives $(8048,8085)$

This converter has been designed to directly interface with derivatives of the 8080 microprocessor. The A/D can be mapped into memory space (using standard memory address decoding for $\overline{C S}$ and the MEMR and MEMW strobes) or it can be controlled as an I/O device by using the I/O R and I/O W strobes and decoding the address bits $\mathrm{A} 0 \rightarrow \mathrm{~A}$ ((or address bits $\mathrm{A} 8 \rightarrow \mathrm{~A} 15$ as they will contain the same 8 -bit address information) to obtain the CS input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A / D should be mapped into memory space. An example of an A / D in I/O space is shown in Figure 56.

Figure 54. A/D Tester with Analog Error Output

Figure 55. Basic "Digital" A/D Tester
Table 2. Decoding the Digital Output LEDs

(1) Display Output=VMS Group + VLS Group

(1) *Pin numbers for the DP8228 system controller, others are INS8080A
(2) Pin 23 of the INS8228 must be tied to +12 V through a $1 \mathrm{k} \Omega$ resistor to generate the RST 7 instruction when an interrupt is acknowledged as required by the accompanying sample program.

Figure 56. ADC0801_INS8080A CPU Interface

SAMPLE PROGRAM FOR Figure 56 ADC0801-INS8080A CPU INTERFACE

0038	C3 0003	RST 7:	JMP	LD DATA

Note: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.
Note: All address used were arbitrarily chosen.
The standard control bus signals of the $8080 \overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$) can be directly wired to the digital control inputs of the A / D and the bus timing requirements are met to allow both starting the converter and outputting the data onto the data bus. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100 pF .

Sample 8080A CPU Interfacing Circuitry and Program

The following sample program and associated hardware shown in Figure 56 may be used to input data from the converter to the INS8080A CPU chip set (comprised of the INS8080A microprocessor, the INS8228 system controller and the INS8224 clock generator). For simplicity, the A/D is controlled as an I/O device, specifically an 8 -bit bi-directional port located at an arbitrarily chosen port address, E0. The TRI-STATE output capability of the A/D eliminates the need for a peripheral interface device, however address decoding is still required to generate the appropriate CS for the converter.
It is important to note that in systems where the A/D converter is 1 -of-8 or less I/O mapped devices, no address decoding circuitry is necessary. Each of the 8 address bits (AO to A7) can be directly used as CS inputs - one for each I/O device.

INS8048 Interface

The INS8048 interface technique with the ADC0801 series (see Figure 57) is simpler than the 8080A CPU interface. There are 24 I/O lines and three test input lines in the 8048. With these extra I/O lines available, one of the I/O lines (bit 0 of port 1) is used as the chip select signal to the A/D, thus eliminating the use of an external address decoder. Bus control signals RD, $\overline{\mathrm{WR}}$ and $\overline{\mathrm{INT}}$ of the 8048 are tied directly to the A/D. The 16 converted data words are stored at on-chip RAM locations from 20 to 2F (Hex). The RD and WR signals are generated by reading from and writing into a dummy address, respectively. A sample interface program is shown below.

Figure 57. INS8048 Interface
SAMPLE PROGRAM FOR Figure 57 INS8048 INTERFACE

0410		JMP	10H	: Program starts at addr 10
		ORG	3H	
0450		JMP	5 H	; Interrupt jump vector
		ORG	10H	; Main program
99 FE		ANL	Pl, \#OFEH	; Chip select
81		MOVX	A, @RI	; Read in the lst data ; to reset the intr
8901	START :	ORL	Pl, \# 1	; Set port pinhigh
B8 20		MOV	RO, \#20H	; Data address
B9 FF		MOV	Rl, \#OFFH	; Dummy address
BA 10		MOV	R2, \#10H	; Counter for 16 bytes
23 FF	AGAIN:	MOV	A, \#OFFH	; Set ACC for intrloop
99 FE		ANL	Pl, \#OFEH	; Send CS (bit 0 of Pl)
91		MOVX	@R1, A	; Send WR out
05		EN	I	; Enable interrupt
9621	LOOP:	JNZ	LOOP	; Wait for interrupt
EA 1B		DJNZ	R2, AGAIN	; If 16 bytes are read
00		NOP		; go to user's program
00		NOP		
		ORG	50H	
81	INDATA :	MOVX	A, @R1	; Input data, CS still low
A0		MOV	@RO, A	; Store inmemory
18		INC	RO	; Increment storage counter
8901		ORL	Pl, \#1	; Reset CS signal
27		CLR	A	; Clear ACC to get out of
93		RETR		; the interrupt loop

Interfacing the Z-80

The Z-80 control bus is slightly different from that of the 8080 . General $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are provided and separate memory request, MREQ, and I/O request, $\overline{\mathrm{IORQ}}$, signals are used which have to be combined with the generalized strobes to provide the equivalent 8080 signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{R D}$ and $\overline{W R}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 58.

Figure 58. Mapping the A/D as an I/O Device for Use with the Z-80 CPU
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A / D can be accomplished with this operating mode.

Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe signals. Instead it employs a single R / \bar{W} line and additional timing, if needed, can be derived from the $\varphi 2$ clock. All I/O devices are memory mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 59 shows an interface schematic where the A/D is memory mapped in the 6800 system. For simplicity, the $\overline{C S}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21 . This can be tied directly to the $\overline{C S}$ pin of the A / D, provided that no other devices are addressed at HX ADDR: 4XXX or 5XXX.

The following subroutine performs essentially the same function as in the case of the 8080A interface and it can be called from anywhere in the user's program.
In Figure 60 the ADC0801 series is interfaced to the M6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter, (PIA).
Here the $\overline{\mathrm{CS}}$ pin of the A/D is grounded since the PIA is already memory mapped in the M6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D $\overline{R D}$ pin can be grounded.
A sample interface program equivalent to the previous one is shown below Figure 60. The PIA Data and Control Registers of Port B are located at HEX addresses 8006 and 8007, respectively.

GENERAL APPLICATIONS

The following applications show some interesting uses for the A/D. The fact that one particular microprocessor is used is not meant to be restrictive. Each of these application circuits would have its counterpart using any microprocessor that is desired.

Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single microprocessor system, a multiple converter scheme presents several advantages over the conventional multiplexer single-converter approach. With the ADC0801 series, the differential inputs allow individual span adjustment for each channel. Furthermore, all analog input channels are sensed simultaneously, which essentially divides the microproces- sor's total system servicing time by the number of channels, since all conversions occur simultaneously. This scheme is shown in Figure 61.

*Numbers in parentheses refer to MC6800 CPU pin out.
**Number or letters in brackets refer to standard M6800 system common bus code.
Figure 59. ADC0801-MC6800 CPU Interface

SAMPLE PROGRAM FOR Figure 59 ADC0801-MC6800 CPU INTERFACE

| 0010 | DF 36 | DATAIN | STX | TEMP2 |
| :--- | :--- | :--- | :--- | :--- | ; Save contents ofX

In order for the microprocessor to service subroutines and inter- rupts, the stack pointer must be dimensioned in the user's program.

Figure 60. ADC0801-MC6820 PIA Interface

SAMPLE PROGRAM FOR Figure 60 ADC0801-MC6820 PIA INTERFACE

0010	CE 0038	DATAIN	LDX	\#\$0038	; Upon IRQ low CPU
0013	FF FF F8		STX	\$FFF8	; jumps to 0038
0016	B6 8006		LDAA	PIAORB	; Clear possible $\overline{I R Q}$ Plags
0019	4 F		CLRA		
001A	B7 8007		STAA	PIACRB	
001D	B7 8006		STAA	PIAORB	; Set Port B as input
0020	OE		CLI		
0021	C6 34		LDAB	\#\$34	
0023	86 3D		LDAA	\#\$3D	
0025	F7 8007	CONVRT	STAB	PIACRB	; Starts ADC0801
0028	B7 8007		STAA	PIACRB	
002B	3E		WAI		; Wait for interrupt
002C	DE 40		LDX	TEMPI	
002E	8 C 020 F		CPX	\#\$020F	; Is final data stored?
0031	27 0F		BEQ	ENDP	
0033	08		INX		
0034	DF 40		STX	TEMP1	
0036	20 ED		BRA	CONVRT	
0038	DE 40	INTRPT	LDX	TEMP1	
003A	B6 8006		LDAA	PIAORB	; Read data in
003D	A7 00		STAA	X	; Store it at X
003F	3B		RTI		
0040	0200	TEMP1	FDB	\$0200	; Starting address for ; datastorage
0042	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
0045	DF 40		STX	TEMP1	
0047	39		RTS		; Return from subroutine
		PIAORB	EQU	\$8006	; To user's program
		PIACRB	EQU	\$8007	

The following schematic and sample subroutine (DATA IN) may be used to interface (up to) 8 ADC0801's directly to the MC6800 CPU. This scheme can easily be extended to allow the interface of more converters. In this configuration the converters are (arbitrarily) located at HEX address 5000 in the MC6800 memory space. To save components, the clock signal is derived from just one RC pair on the first converter. This output drives the other A/Ds.
All the converters are started simultaneously with a STORE instruction at HEX address 5000. Note that any other HEX address of the form 5XXX will be decoded by the circuit, pulling all the CS inputs low. This can easily be avoided by using a more definitive address decoding scheme. All the interrupts are ORed together to insure that all A/Ds have completed their conversion before the microprocessor is interrupted.
The subroutine, DATA IN, may be called from anywhere in the user's program. Once called, this routine initializes the CPU, starts all the converters simultaneously and waits for the interrupt signal. Upon receiving the interrupt, it reads the converters (from HEX addresses 5000 through 5007) and stores the data successively at (arbitrarily chosen) HEX addresses 0200 to 0207, before returning to the user's pro- gram. All CPU registers then recover the original data they had before servicing DATA IN.

Auto-Zeroed Differential Transducer Amplifier and A/D Converter

The differential inputs of the ADC0801 series eliminate the need to perform a differential to single ended conversion for a differential transducer. Thus, one op amp can be eliminated since the differential to single ended conversion is provided by the differential input of the ADC0801 series. In general, a transducer preamp is required to take advantage of the full A / D converter input dynamic range.

*Numbers in parentheses refer to MC6800 CPU pin out
${ }^{* *}$ Numbers of letters in brackets refer to standard M6800 system common bus code.
Figure 61. Interfacing Multiple A/Ds in an MC6800 System

ADDRESS	HEX CODE		MNEMONICS		COMMENTS
0010	DF 44	DATAIN	STX	TEMP	; Save Contents of X
0012	CE 002 A		LDX	\#\$002A	; Upon $\overline{\text { IRQ }}$ LOW CPU
0015	FF FFF8		STX	\$FFF8	; Jumps to 002A
0018	B7 5000		STAA	\$5000	; Starts all A/D's
001B	OE		CLI		
001C	3E		WAI		; Wait for interrupt
001D	CE 5000		LDX	\#\$5000	
0020	DF 40		STX	INDEXI	; Reset both INDEX
0022	CE 0200		LDX	\#\$0200	; 1 and 2 to starting
0025	DF 42		STX	INDEX2	; addresses
0027	DE 44		LDX	TEMP	
0029	39		RTS		; Return fromsubroutine
002A	DE 40	INTRPT	LDX	INDEXI	; INDEXI \rightarrow X
002C	A6 00		LDAA	X	; Read data in from A/D at X
002E	08		INX		; Increment X by one
002F	DF 40		STX	INDEXI	; $\mathrm{X} \rightarrow$ INDEXI
0031	DE 42		LDX	INDEX2	; INDEX2 \rightarrow X

SAMPLE PROGRAM FOR Figure 61 INTERFACING MULTIPLE A/D's IN AN MC6800 SYSTEM

| ADDRESS | HEX CODE | MNEMONICS | | |
| :--- | :--- | :--- | :--- | :--- | COMMENTS

Note: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

For amplification of DC input signals, a major system error is the input offset voltage of the amplifiers used for the preamp. Figure 62 is a gain of 100 differential preamp whose offset voltage errors will be cancelled by a zeroing subroutine which is performed by the INS8080A microprocessor system. The total allowable input offset voltage error for this preamp is only $50 \mu \mathrm{~V}$ for $/ 44 \mathrm{LSB}$ error. This would obviously require very precise amplifiers. The expression for the differential output voltage of the preamp is:

$R 2=49.5 R 1$
Switches are LMC13334 CMOS analog switches.
The 9 resistors used in the auto-zero section can be $\pm 5 \%$ tolerance.
Figure 62. Gain of 100 Differential Transducer Preamp
where I_{x} is the current through resistor R_{X}. All of the offset error terms can be cancelled by making $\pm I_{x} R_{X}=V_{O S 1}$ $+V_{\mathrm{OS3}}-\mathrm{V}_{\mathrm{OS} 2}$. This is the principle of this auto-zeroing scheme.
The INS8080A uses the 3 I/O ports of an INS8255 Programable Peripheral Interface (PPI) to control the auto zeroing and input data from the ADC0801 as shown in Figure 63. The PPI is programmed for basic I/O operation (mode 0) with Port A being an input port and Ports B and C being output ports. Two bits of Port C are used to alternately open or close the 2 switches at the input of the preamp. Switch SW1 is closed to force the preamp's differential input to be zero during the zeroing subroutine and then opened and SW2 is then closed for conversion of the actual differential input signal. Using 2 switches in this manner eliminates concern for the ON resistance of the switches as they must conduct only the input bias current of the input amplifiers.
Output Port B is used as a successive approximation register by the 8080 and the binary scaled resistors in series with each output bit create a D/A converter. During the zeroing subroutine, the voltage at V_{x} increases or decreases as required to make the differential output voltage equal to zero. This is accomplished by ensuring that the voltage at the output of A1 is approximately 2.5 V so that a logic " 1 " (5 V) on any output of Port B will source current into node V_{X} thus raising the voltage at V_{X} and making the output differential more negative. Conversely, a logic " 0 " (0 V) will pull current out of node V_{X} and decrease the voltage, causing the differential output to become more positive. For the resistor values shown, V_{X} can move $\pm 12 \mathrm{mV}$ with a resolution of $50 \mu \mathrm{~V}$, which will null the offset error term to $/ 4$ LSB of full-scale for the ADC0801. It is important that the voltage levels that drive the auto-zero resistors be constant. Also, for symmetry, a logic swing of 0 V to 5 V is convenient. To achieve this, a CMOS buffer is used for the logic output signals of Port B and this CMOS package is powered with a stable 5 V source. Buffer amplifier A 1 is necessary so that it can source or sink the D/A output current.

Figure 63. Microprocessor Interface Circuitry for Differential Preamp
A flow chart for the zeroing subroutine is shown in Figure 64. It must be noted that the ADC0801 series will output an all zero code when it converts a negative input $\left[\mathrm{V}_{\mathbb{I N}}(-) \geq \mathrm{V}_{\mathbb{I N}}(+)\right]$. Also, a logic inversion exists as all of the I/O ports are buffered with inverting gates.

Basically, if the data read is zero, the differential output voltage is negative, so a bit in Port B is cleared to pull VX more negative which will make the output more positive for the next conversion. If the data read is not zero, the output voltage is positive so a bit in Port B is set to make VX more positive and the output more negative. This continues for 8 approximations and the differential output eventually converges to within 5 mV of zero.

The actual program is given in Figure 65. All addresses used are compatible with the BLC 80/10 microcomputer system. In particular:

- Port A and the ADC0801 are at port address E4
- Port B is at port address E5
- Port C is at port address E6
- PPI control word port is at port address E7
- Program Counter automatically goes to ADDR:3C3D upon acknowledgment of an interrupt from the ADC0801

Multiple A/D Converters in a Z-80 Interrupt Driven Mode

In data acquisition systems where more than one A/D converter (or other peripheral device) will be interrupting pro- gram execution of a microprocessor, there is obviously a need for the CPU to determine which device requires servicing. Figure 66 and the accompanying software is a method of determining which of 7 ADC0801 converters has completed a conversion (INTR asserted) and is requesting an interrupt. This circuit allows starting the A/D converters in any sequence, but will input and store valid data from the converters with a priority sequence of $A / D 1$ being read first, $A / D 2$ second, etc., through $A / D 7$ which would have the lowest priority for data being read. Only the converters whose INT is asserted will be read.

The key to decoding circuitry is the DM74LS373, 8-bit D type flip-flop. When the Z-80 acknowledges the interrupt, the program is vectored to a data input Z-80 subroutine. This subroutine will read a peripheral status word from the DM74LS373 which contains the logic state of the INTR outputs of all the converters. Each converter which initiates an interrupt will place a logic " 0 " in a unique bit position in the status word and the subroutine will determine the identity of the converter and execute a data read. An identifier word (which indicates which A / D the data came from) is stored in the next sequential memory location above the location of the data so the program can keep track of the identity of the data entered.

Figure 64. Flow Chart for Auto-Zero Routine

3D00	3E90	MVI 90		
3D02	D3E7	Out Control Port		; Program PPI
3D04	2601	MVI H 01	Auto-Zero Subroutine	
3D06	7 C	MOV A, H		
3D07	D3E6	OUT C		; Close SWl open SW2
3D09	0680	MVI B 80		; Initialize SAR bit pointer
3DOB	3E7F	MVI A 7 F		; Initialize SAR code
3DOD	4 F	MOV C, A	Return	
3DOE	D3E5	OUT B		; Port B=SAR code
3D10	31AA3D	LXI SP 3DAA	Start	; Dimension stack pointer
3D13	D3E4	OUT A		; Start A/D
3D15	FB	IE		
3D16	00	NOP	Loop	; Loop until $\overline{\text { INT }}$ asserted
3D17	C3163D	JMP Loop		
3D1A	7A	MOV A, D	Auto-Zero	
3D1B	C600	ADI 00		
3DID	CA2D3D	JZ Set C		; Test A/D output data for zero
3D20	78	MOV A, B	Shift B	
3D21	F600	ORI 00		; Clear carry
3D23	1 F	RAR		; Shift "l" in B right one place
3D24	FE00	CPI 00		; Is B zero? If yes last
3D26	CA373D	JZ Done		; approximation has been made
3D29	47	MOV B , A		
3D2A	C3333D	JMP New C		
3D2D	79	MOV A, C	Set C	
3D2E	B0	ORA B		; Set bit in C that is in same
3D2F	4 F	MOV C, A		; position as "l" in B
3D30	C3203D	JMP Shift B		
3D33	A9	XRA C	New C	; Clear bit in C that is in
3D34	C30D3D	JMP Return		; same position as "l" in B
3D37	47	MOV B, A	Done	; then out put new SAR code.
3D38	7 C	MOV A, H		; Open SW1, close SW2 then
3D39	EE03	XRI 03		; proceed with program. Preamp
3D3B	D3E6	OUT C		; is now zeroed.
3D3D		-	Normal	
		Program for processing proper data values		
3C3D	DBE4	INA	Read A/D Subroutine	; Read A/D data
3 C 3 F	EEFF	XRI FF		; Invert data
3 C 41	57	MOV D, A		
$3 \mathrm{C42}$	78	MOV A, B		; Is $\mathrm{BReg}=0$? If not stay
3 C 43	E6FF	ANI FF		; in auto zero subroutine
3 C 45	C21A3D	JNZ Auto-Zero		
3 C 48	C33D3D	JMP Normal		

NOTE: All numerical values are hexadecimal representations.
Figure 65. Software for Auto-Zeroed Differential A/D
The following notes apply:

- It is assumed that the CPU automatically performs a RST 7 instruction when a valid interrupt is acknowledged (CPU is in interrupt mode 1). Hence, the subroutine starting address of X0038.
- The address bus from the Z-80 and the data bus to the Z-80 are assumed to be inverted by bus drivers.
- A/D data and identifying words will be stored in sequential memory locations starting at the arbitrarily chosen address X 3E00.
- The stack pointer must be dimensioned in the main program as the RST 7 instruction automatically pushes the PC onto the stack and the subroutine uses an additional 6 stack addresses.
- The peripherals of concern are mapped into I/O space with the following port assignments:

HEX PORT ADDRESS	PERIPHERAL	HEX PORT ADDRESS	PERIPHERAL
00	MM74C374 8-bit flip-flop	04	A/D 4
01	A/D 1	05	A/D 5
02	A/D 2	06	A/D 6
03	A/D 3	07	A/D 7

This port address also serves as the A/D identifying word in the program.

Figure 66. Multiple A/Ds with Z-80 Type Microprocessor

INTERRUPT SERVICING SUBROUTINE

LOC	OBJ CODE		SOURCE STATEMENT	COMMENT
0038	E5		PUSH HL	; Save contents of all registers affected by
0039	C5		PUSH BC	; this subroutine.
003A	F5		PUSHAF	; Assumed INT mode 1 earlier set.
003B	21003 E		LD (HL) , X3E00	; Initialize memory pointer where data will be stored.
003E	OE 01		LD C, X01	; C registerwill be port ADDR of A/D converters.
0040	D300		OUT X00, A	; Load peripheral status word into 8-bit latch.
0042	DB00		IN $\mathrm{A}, \mathrm{X} 00$; Load status word into accumulator.
0044	47		LD B, A	; Save the status word.
0045	79	TEST	LD A, C	; Test to see if the status of all A/D's have
0046	FE 08		CP, X08	; been checked. If so, exit subroutine
0048	CA 6000		JPZ, DONE	
004B	78		LD A, B	; Test a single bit in status word by looking for
004C	1 F		RRA	; a "l" to be rotated into the CARRY (an INT
004D	47		LD B, A	; is loaded as a "l"). If CARRY is set then load
004E	DA 5500		JPC, LOAD	; contents of A/D at port ADDR in C register.
0051	OC	NEXT	INC C	; If CARRY is not set, increment C register to point
0052	C3 4500		JP, TEST	; to next A/D, then test next bit in status word.
0055	ED 78	LOAD	INA, (C)	; Read data from interrupting A/D and invert
0057	EE FF		XOR FF	; the data.
0059	77		LD (HL) , A	; Store the data
005A	2 C		INC L	
005B	71		LD (HL) , C	; Store A/D identifier (A/D port ADDR) .
005C	2 C		INC L	
005D	C3 5100		JP, NEXT	; Test next bit in status word.
0060	F1	DONE	POP AF	; Re-establish all registers as they were
0061	Cl		POP BC	; before the interrupt.
0062	El		POP HL	
0063	C9		RET	; Returnto original program

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking \qquad (4/5)	Samples
ADC0801LCN/NOPB	ACTIVE	PDIP	NFH	20	18	Pb-Free (RoHS)	SN	Level-1-NA-UNLIM	-40 to 85	ADC0801LCN	Samples
ADC0802LCN	NRND	PDIP	NFH	20	18	TBD	Call TI	Call TI	-40 to 85	ADC0802LCN	
ADC0802LCN/NOPB	ACTIVE	PDIP	NFH	20	18	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 85	ADC0802LCN	Samples
ADC0802LCWM/NOPB	ACTIVE	SOIC	DW	20	36	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 85	ADC0802 LCWM	Samples
ADC0803LCN	NRND	PDIP	NFH	20	18	TBD	Call TI	Call TI	-40 to 85	ADC0803LCN	
ADC0803LCN/NOPB	ACTIVE	PDIP	NFH	20	18	Pb-Free (RoHS)	CU SN	Level-1-NA-UNLIM	-40 to 85	ADC0803LCN	Samples
ADC0804LCN	NRND	PDIP	NFH	20	18	TBD	Call TI	Call TI	-40 to 85	ADC0804LCN	
ADC0804LCN/NOPB	ACTIVE	PDIP	NFH	20	18	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 85	ADC0804LCN	Samples
ADC0804LCWM	NRND	SOIC	DW	20	36	TBD	Call TI	Call TI	-40 to 85	ADC0804 LCWM	
ADC0804LCWM/NOPB	ACTIVE	SOIC	DW	20	36	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 85	ADC0804 LCWM	Samples
ADC0804LCWMX	NRND	SOIC	DW	20	1000	TBD	Call TI	Call TI	-40 to 85	ADC0804 LCWM	
ADC0804LCWMX/NOPB	ACTIVE	SOIC	DW	20	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 85	ADC0804 LCWM	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

[^0]In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\underset{(\mathrm{mm})}{\mathrm{AO}}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
ADC0804LCWMX	SOIC	DW	20	1000	330.0	24.4	10.9	13.3	3.25	12.0	24.0	Q1
ADC0804LCWMX/NOPB	SOIC	DW	20	1000	330.0	24.4	10.9	13.3	3.25	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADC0804LCWMX	SOIC	DW	20	1000	367.0	367.0	45.0
ADC0804LCWMX/NOPB	SOIC	DW	20	1000	367.0	367.0	45.0

NFH0020A

DW (R-PDSO-G20) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
 ${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
 ${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
 ${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
 ${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

 Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

