CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Marco Alvarez

University of Rhode Island
(These slides were created/modified by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 at UC Berkeley)

Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?

Constraint Satisfaction Problems

= Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

= Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Heuristics give problem-specific guidance

= |dentification: assignments to variables
= The goal itself is important, not the path
» All paths at the same depth (for some formulations)
= CSPs are specialized for identification problems

» Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

= Constraint satisfaction problems (CSPs):
= Aspecial subset of search problems
= State is defined by variables X; with values from
a domain D (sometimes D depends on i)
= Goal test is a set of constraints specifying

allowable combinations of values for subsets of
variables

= Simple example of a formal representation
language

= Allows useful general-purpose algorithms with
more power than standard search algorithms

CSP Examples

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: D = {red, green, blue}

Constraints: adjacent regions must have
different colors

Implicit: WA # NT

Explicit: (WA NT) € {(red, green), (red, blue), ...}
Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Constraint Graphs

Constraint Graphs

® @'

©

o
@
o

= Binary CSP: each constraint relates (at most) @

two variables @‘

= Binary constraint graph: nodes are variables, @
arcs show constraints

M

«‘@

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is
an independent subproblem!

©

Example: N-Queens

Example: N-Queens

= Formulation 1:
= Variables: X;;
= Domains: {0, 1}
= Constraints

Vi, g,k (Xi5, Xix) € {(0,0),(0,1),(1,0)}

Vi, 5, k (Xij:ij) € {(0,0),(0,1),(1,0)} ZXij =N
Vi, j, k (X'L]a X’L—+—k,j+k) € {(Oa O)a (Oa 1)’ (17 0)} J

Vi, g, k (XZ‘]ﬂXZ-‘rk,jfk) € {(030)’(071)7(130)}

= Formulation 2:

. Q1
= Variables: @, Q2

. Q3
» Domains: {1,2,3,... N} Qs

= Constraints:

Implicit: Vi,j non-threatening(Q;, Q;)

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

Example: Sudoku

Varieties of CSPs and Constraints

= Variables:
= Each (open) square
= Domains:
s (4 . {1,2,.,9

84 116 = Constraints:

5 1
1 318 9 9-way alldiff for each column
6 2 5 g :13 9-way alldiff for each row

7 > 9-way alldiff for each region
(or can have a bunch of

718 2|6 £ pairwise inequality

2 3 constraints)

Varieties of CSPs

Varieties of Constraints

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments
« E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for
each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP
methods (see cs170 for a bit of this theory)

= Varieties of Constraints
= Unary constraints involve a single variable (equivalent to

= Preferences (soft constraints):

reducing domains), e.g.:

SA # green

Binary constraints involve pairs of variables, e.g.:

SA # WA

Higher-order constraints involve 3 or more variables:

E.g., red is better than green

Often representable by a cost for each variable assignment
Gives constrained optimization problems

(We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

Solving CSPs

= Assignment problems: e.g., who teaches what class

= Timetabling problems: e.g., which class is offered when and where?
= Hardware configuration

= Transportation scheduling

« Factory scheduling

» Circuit layout

= Fault diagnosis =0

= ... lots more! N Z —
T T

= Many real-world problems involve real-valued variables...

Standard Search Formulation

Search Methods

= Standard search formulation of CSPs

= States defined by the values
assigned so far (partial assighments)
= |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

=« We’ll start with the straightforward,
naive approach, then improve it

= What would BFS do? @

0 —~ "@
[(WA=g} {(WA=r} ... {(NT=g} ... ‘

EE—®

) O

O,

[aemo: coloring -- dfs]

Search Methods

Video of Demo Coloring -- DFS

= What would BFS do? @

1

e

= What would DFS do? @‘@
)

@

[Demo: coloring -- dfs]

= What problems does naive search have?

Search Methods

= What would BFS do?

= What would DFS do?

[demo: dfs]

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering

= |.e., [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
» Might have to do some computation to check the constraints

= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

Video of Demo Coloring - Backtracking

[Demo: coloring -- backtracking]

/ \ / \ / \ Graph
— —) Simple =
\) \ \ /
) 7 T Algorith
P orithm
T i J’ 4 T i
/ % Backtracking =
\ [\ \ Ordering
— —) © None
\ / \ / AN / MRV
- T s MRV with LCV
71 [raong
y < y < ~ o None
/ \ / \ / \ Forward Checking
— —) Avc Consistency
/ \ / \ /
2 S N Speed

Speedup Frame Delay
T Jx 0

Backtracking Search Improving Backtracking

function BACKTRACKING-SEARCH(cspyFetyrns solution/failure
return RECURSIVE-BACKTRACKING({ }, dsp)

General-purpose ideas give huge gains in speed
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
f_assignment is complete then return_assignment
jar— SELECT-UNASSIGNED- VARIABLH(VARIABLES[csp], assignment, csp) - ordering.
or each value in ORJ_)ERfD()MAleVALUt;skz-ur: assignment, csp) do °

if[mlu(is consistent with us,w/nmr//,/]given CONSTRAINTS[csp] then = Which variable should be aSSigned next?

add {var = valuc] o assignment = In what order should its values be tried?
result < RECURSIVE-BACKTRACKING(assignment, csp) :

if result # failure then return result
remove {var = value} from assignment

return failure » Filtering: Can we detect inevitable failure early?

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the choice points?

Structure: Can we exploit the problem structure?

Ordering Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):
» Choose the variable with the fewest legal left values in its domain

S

= Why min rather than max?
= Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Least Constraining Value

Filtering

= Value Ordering: Least Constraining Value
= Given a choice of variable, choose the least

constraining value .
= l.e., the one that rules out the fewest values in “—Lt
the remaining variables

= Note that it may take some computation to
determine this! (E.g., rerunning filtering)

&
o

= Why least rather than most?

= Combining these ordering ideas (and
filtering) makes 1000 queens feasible

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad
options

= Forward checking: Cross off values that violate a constraint when added to the

existing assighment

.
Wa £1Q

WA NT Q NSW \ SA

[Demo: coloring -- forward checking]

Video of Demo Coloring - Backtracking with Forward Checking

]
Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
Deis St Sl S
¥

NSW v SA

[demo: forward checking]

Filtering: Constraint Propagation

Consistency of A Single Arc

= Forward checking propagates information from assigned to unassigned variables,

but doesn't provide early detection for all failures:

WA NT Q NswW \ SA
‘ NT ‘ CE I T ireri
2 fsw (| "EEfEETEESE] SE

(| (E(eewe mESE] m]

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint

= An arc X — Y is consistent iff for every x in the tail there is somey in the head which could be

assigned without violating a constraint

\

NT WA NT Q NSW v sA
¢, EEErIETEETAEEE
u

Delete from the tail!

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

Enforcing Arc Consistency in a CSP

= Asimple form of propagation makes sure all arcs are consistent:

‘NT‘ WA NT Q NSW v SA
A TNew | — | 1 Y 1 |

v V\y

= Important: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment Remember-
= What’s the downside of enforcing arc consistency? Delete from the
tail!

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X1, X,. ..., X,}
local variables{_gucic, § queue of arcs, initially all the arcs in csp
while gueue is not empty do
(X, X;) < REMOVE-FIRST(qucuc)
if [REMOVE-INCONSISTENT- VALUES(X;, X,) then
for each X, in NEIGHBORS[.X;] do

adf (X, X)) to queuc

function REMOVE-INCONSISTENT-VALUES(X;. X)) returns true iff succeeds
removed — false
for each x in DOMAIN[X,] do
if no value y in DOMAIN[X] allows () to satisfy the constraint X; — X;
then delete = from DOMAIN[X)]; removed — true
return removed

= Runtime: O(n2d3), can be reduced to O(n?d?)
= ... but detecting all possible future problems is NP-hard - why?

Limitations of Arc Consistency

Video of Demo Coloring - Backtracking with Forward
Checking - Complex Graph

= After enforcing arc O
consistency:
Can—_mm

= Can have one solution left
= Can have multiple solutions left

= Can have no solutions left (and @

not know it) x
i aw

= Arc consistency still runs
inside a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

e Y

Graph
o \o/ Yo/ e
NI I
\ o.o)_o.o‘ ‘o.o_‘\o.o P
Y G agoritm
) W= &
@
N = Ordering
)) MRV
. . MRV with LCV
) (o9 [Filtering
e
T ¥ 1
5

Video of Demo Coloring - Backtracking with Arc
Consistency - Complex Graph

Graph
Algorithm
Backtracking

Ordering
o None

