

Laboratory Manual
CS/EEE/INSTR F241Microprocessor
Programming & Interfacing
DOS INTERRUPTS – BASIC KEYBOARD & DISPLAY
CONSOLE INTERRUPTS

Anupama KR & Meetha.V.Shenoy

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE,
PILANI – KK BIRLA GOA CAMPUS

LAB 3 – DOS INTERRUPTS – BASIC KEYBOARD & DISPLAY CONSOLE INTERRUPTS

3.1 Introduction to DOS & BIOS Interrupts

The BIOS is specific to the individual computer system. It contains the default resident hardware

dependent drivers for several devices including the console display, keyboard, and the boot disk

device. Have you ever wondered how you are able to type characters and view them even when no

OS is loaded, like when the computer is booting?

The BIOS operates at a more primitive level than the DOS kernel. In a X86 based systems, there are

total of 256 possible interrupts, out of which some interrupts are reserved for DOS, BIOS services,

which the programmer can access by loading the function number into appropriate registers and

then invoking the interrupt.

In providing the DOS functions, the MS-DOS kernel communicates with the BIOS device drivers

through the BIOS functions. DOS then provides something like a wrapper over the primitive BIOS

function. By providing the wrapper, DOS makes the functions easier to use and more reliable, but in

turn, reduce the flexibility and power of the functions. By using the BIOS interrupts directly, the

programmer bypasses the DOS kernel.

In the next two experiments you will using INT 21 H (DOS Interrupts) – Here we use INT 21H to

access value of key pressed and display charcters.

3.2 Keyboard Interrupts

Purpose: Input a character from keyboard (STDIN) with Echo

Program Segment

MOV AH, 01h ; AH -01 parameter for INT 21h

 INT 21h

You have to run the program using debug/debug32 and the ASCII key you press will be stored in AL

register.

Purpose: Input a character from keyboard (STDIN) without Echo

Program Segment

MOV AH, 08h ; AH -08 parameter for INT 21h

 INT 21h

You have to run the program using debug/debug32 and the ASCII key you press will be stored in AL

register. The difference is the character will not be visible on the screen when you type it

Purpose: Input a string from keyboard (STDIN)

Program

.data

max1 db 32 ; 32 is max no. of chars that a user can type in (max possible – 255)

act1 db ? ; actual count of keys that user types will be stored here after int has

; executed (Note this cannot exceed the value specified in max1 –

; actual keys you enter will 31 as the 32nd will be Enter key)

inp1 db 32 dup(0) ; Reserve 32 locations for input string

.code

.startup

LEA DX,max1

MOV AH, 0Ah

 INT 21h

After the interrupt, act 1 will contain the number of characters read, and the characters themselves

will start at inp1 The characters will be terminated by a carriage return (ASCII code 0Dh), although

this will not be included in the count (Note: this will not be included in the ACT1 but you have to

count Enter also when you are specifying it in max1)

Purpose: Output a character to display (STD OUT)

Program Segment

MOV DL, ‘A’

MOV AH, 02h

INT 21h

After Interrupt is executed character ‘A’ will be displayed on the screen.

Purpose: Output a string on display (STDOUT)

Program

.data

str1 db ‘HELLO $’ ; all strings must terminate with ‘$’ ASCII value (24h)

.code

.startup

 lea dx, str1

 mov ah, 09h

 int 21h

When interrupt is executed the string “HELLO” will be displayed on screen.

Remove the ‘$’ sign. What happens?

Task1: Write an ALP that will take in a string of maximum 20 characters from user and display it on

the next line on the screen (ASCII equivalent for newline is 0Dh (enter) followed by 0Ah (next line))

Task2: Write an ALP that does the following

(1) Display the string “Enter User Name” and goes to the next line

(2) Takes in the user entered string compares with user name value already stored in memory

(3) If there is no match it should exit.

(4) If there is a match it should display the string “Enter Password” and goes to next line

(5) Takes in password entered by the user and compares with password already stored in memory

(6) If there is no match it should exit’

(7) If there is a match it should display “Hello Username”

Note:

While the username is being entered it can be displayed but when password is being entered user

pressed key should be displayed instead it should display “*” for every key pressed.

The user name size is fixed to 10 characters and password to 8 characters.

