PROTEUS SYSTEM DESIGN EXAMPLE

A 8086 based system checks a set of 8 switches (SW1- SW8) every 1 second and displays the no. of switch that is closed(assume only 1 switch is closed at a time) - if no switch is closed - 0 is displayed.

SWITCH – SINGLE POLE DOUBLE THROW SWITCH

INTERFACE TO SWITCH

 $\blacksquare PB_0 - PB_7 (SWI - SW8)$

7 SEGMENT DISPLAY

- I seven segment displays
- | |- 7447
- Requires 4-bit

I SEC INTERRUPT

Use 8253 as only that is available in proteus

Clock has to be generated using pulse generator using IOKHz – if a higher frequency is used – pulse will not be proper- as rise and fall time of pulse in proteus can be set to a minimum of I µs – and the rise and fall time are should be less than I % of frequency.

INTERRUPT GENERATION

INTERFACE 8255, 8254 & 8259

- Fixed addressing
- Address
- 00 06_H -8255
- 08_H 0E_H 8254
- 10_H 12_H 8259
- Incremental Addressing

INTERFACE MEMORY

- RAM minimum 2k chip- 4k
- ROM in proteus 7 is minimum 4k chip 8k
- ROMI 00000_H 01FFF_H
 - This is ok as proteus allows you to set reset address I have set it to 0000:0400(CS:IP)
 - This the area after IVT
- RAM 02000_H 02FFF_H

System Bus of 8086 (Address)

8086 Inputs

Software

Use EMU 8086 for assembling – as it creates the read binary file to load to 8086 ROM