CS/ECE/EEE/INSTR F241 - MICROPROCESSOR PROGRAMMING \& INTERFACING

MODULE 6: PROTECTED MODE OF OPERATION

Questions

Q1. If the DPL of a segment is 10 , What are the RPL values allowed for access?
Q2. If the 8 byte descriptor of a segment in 80286 is 0000 FF 32000000 FF What is the size of the segment?

Is this a code or data segment?
Is this segment Read only/execute only, Read or Write?
Has this segment been accessed before?
What is the starting address of the segment?
What is the minimum RPL required to access this segment?
Q3. If the 8-byte descriptor of a segment in 80386 is $\mathbf{3 4} \mathbf{~ D 0 ~} \mathbf{9 3} \mathbf{2 4 0 0 0 0 0 0 0 3} \mathbf{0 0}$ - What is the size of the segment?

Q4. From the 8 byte 80386 descriptor given below (a) what will be the start address of the segment in memory and (b) what is the size of the segment in bytes? (Descriptor is given in BIG ENDIAN FORMAT (i.e.) MSB onwards)

A2 5F B7 000000 FF FF
Q6. What will be the maximum size of virtual memory that can be supported by an 80386 system? And how do you get this value?

Q7. What will be the maximum size of virtual memory that can be supported by an 80286 system? And how do you get this value?

Q8. In an 80286 Processor $-G D T R=100000_{\mathrm{H}}$ with the following tables.
GDT

Address	Data							
100008	00	00	82	01	00	00	FF	FF
100010	00	00	82	20	00	00	FF	FF
100018	00	00	83	03	00	00	00	3 F
100020	00	00	FC	OA	00	00	00	1 F
100028	00	00	DF	B0	00	00	01	FF
100030	00	00	92	B1	00	00	OF	FF
100038	00	00	B2	7B	00	00	03	FF
100040	00	00	D2	7A	00	00	07	FF
100048	00	00	9 F	A1	00	00	1F	FF
100050	00	00	C4	A3	00	00	3 F	FF
100058	00	00	82	B1	00	00	FF	FF
100060	00	00	B3	50	00	00	1 F	FF

LDT1

Address	Data							
010000	00	00	82	01	00	00	FF	FF
010008	00	00	82	20	00	00	FF	FF
010010	00	00	83	03	00	00	00	3F
010018	00	00	FC	OA	00	00	00	1F
010020	00	00	DF	B0	00	00	01	FF
010028	00	00	92	B1	00	00	OF	FF
010030	00	00	B2	7B	00	00	03	FF
010038	00	00	D2	7A	00	00	07	FF
010040	00	00	9F	A1	00	00	1F	FF
010048	00	00	B3	A3	00	00	3 F	FF
010050	00	00	B3	B1	00	00	FF	FF
010058	00	00	82	50	00	00	1F	FF

LDT2

Address	Data							
200000	00	00	82	01	00	00	FF	FF
200008	00	00	82	20	00	00	FF	FF
200010	00	00	83	03	00	00	00	3 F
200018	00	00	FC	OA	00	00	00	1F
200020	00	00	DF	B0	00	00	01	FF
200028	00	00	92	B1	00	00	OF	FF
200030	00	00	B2	7B	00	00	03	FF
200038	00	00	D2	7A	00	00	07	FF
200040	00	00	9 F	A1	00	00	1F	FF
200048	00	00	B3	A3	00	00	3 F	FF
200050	00	00	82	B1	00	00	FF	FF
200058	00	00	B3	50	00	00	1F	FF

(a) If the $\mathrm{DS}=0050_{\mathrm{H}}$ and the instruction is -MOV AX, $\left[1200_{\mathrm{H}}\right.$]. What will be the Physical Address. What is the type of Segment, protection Level etc.?
(b) If the $\mathrm{DS}=0054_{\mathrm{H}}$ and the LDTR -0008_{H}. If the Instruction is MOV BX, [1234H]. What will be the Physical Address? What is the type of Segment, protection Level etc.?

Q9. If in an 80386 Processor if: CR3 FF 000000 , and if Paging is Enabled and the following tables GDT

Address	Data							
00100008	00	D0	82	01	00	00	FF	FF
00100010	00	DO	82	20	00	00	FF	FF
00100018	04	Do	83	03	00	00	00	3 F
00100020	00	D0	FC	OA	00	00	00	1F
00100028	00	D0	DF	B0	00	00	01	FF
00100030	00	Do	92	B1	00	00	OF	FF
00100038	01	D0	B2	7B	00	00	03	FF
00100040	00	Do	D2	7A	00	00	07	FF
00100048	03	D0	9 F	A1	00	00	1 F	FF
00100050	00	D0	B3	A3	00	00	3 F	FF
00100058	00	DF	82	B1	00	00	FF	FF
00100060	30	D0	B3	50	00	00	1F	FF

Address	Data			
FF000000	01	00	00	00
FF000004	02	00	00	00
FF000008	03	00	00	00
FF00000C	04	00	00	00
FF000010	05	00	00	00
FF000014	06	00	00	00
FF000018	08	00	00	00
FF00001C	OA	00	00	00
FF000020	OB	00	00	00
FF000024	OC	00	00	00
FF000028	OE	00	00	00
FF00002C	OF	00	00	00

PT

Address	Data			
03000000	21	00	00	00
03000004	22	00	00	00
03000008	23	00	00	00
0300000 C	24	00	00	00
03000010	25	00	00	00
03000014	26	00	00	00
03000018	28	00	00	00
0300001 C	2 A	00	00	00
03000020	2 B	00	00	00
03000024	2 C	00	00	00
03000028	2 D	00	00	00
0300002 C	30	00	00	00

Address	Data			
030008Co	10	00	00	00
030008C4	11	00	00	00
030008C8	12	00	00	00
030008CC	13	00	00	00
030008Do	14	00	00	00
030008D4	15	00	00	00
030008D8	16	00	00	00
030008DC	1 A	00	00	00
030008Eo	1 B	00	00	00
030008E4	1 C	00	00	00
030008E8	10	00	00	00
030008EC	12	00	00	00

If $\mathrm{DS}=0050_{\mathrm{H}}$ and the Instruction being executed is MOV EAX,[00 000034$]$. What will be the Physical Address, Type of Segment, Protection Level etc.?

Q10. If the starting address of a read only valid Non-system data segment in 80286 is C 30000 H and its size is 24 KB , Highest Privilege Level, has been accessed before and addresses have to be incremented to read consecutive data (i.e. address expands upwards), what will be the 8 -byte descriptor? (Write from MSB onwards)

Q11. If Paging is enabled and CR3 $=70000000_{\text {H }}$ and Linear address generated is $A C 000178_{H}$. What will be the address in the Paging Directory that will you look for in order to get the starting address of the paging table?

