
Kleene Algebras and Algebraic Path Problems

Davis Foote

May 8, 2015

1 Regular Languages

1.1 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a model of computation that can simulate
any decision algorithm which uses a constant amount of memory [4]. As a brief example,
consider the problem of designing a “computer” which operates an overhead light hooked
up to two switches A and B. There are four states the system can be in corresponding
to whether each switch is on (1) or off (0). Both switches start out at 0 and initially the
light is off. Every time a switch is flipped, we want to toggle whether the light is on. This
behavior can be summarized in the following diagram:

00 11

01

10

A B

AB

B A

BA

start

The two bits correspond to the state of each of switch A and B, and an arrow (edge) from
one state u to another state v labeled with the name of a switch s means that if switch s is
flipped while the system is in state u, it will transition to state v. The light is on whenever
the system is in one of the circled states.

1



1.2 Nondeterministic Finite Automata 1 REGULAR LANGUAGES

The formal definition of a DFA D is a 5-tuple D = (Q,Σ, δ, q0, F ). Q is the set of states.
Σ is the input alphabet, i.e. the set of possible inputs to the automaton (in the above
example, Σ = {A,B}). δ : Q × Σ → Q is the transition function, which maps a current
state and an input to a resulting state. This function provides the edges when a DFA is
depicted as a graph (as above). q0 is the starting state. F is the set of accepting states
(the states which are circled above) [4].

A DFA then defines a function D : Σ∗ → {accept, reject}. Σ∗ is the set of all strings
over Σ, i.e. the set of all finite-length sequences of elements of Σ including the length-0
empty string ε. ‘

A DFA D = (Q,Σ, δ, q0, F ) accepts a string s = s1s2 . . . sn if there exists a sequence of
states q0q1q2 . . . qn such that qi = δ(qi−1, si) for all 1 ≤ i ≤ n and qn ∈ F [4].

A language over a given alphabet is simply a subset of the set of all strings over that
alphabet. The language decided by a DFA D is the set of all strings which are accepted
by D. A regular language is any language which can be decided by a DFA.

The following are a few more examples of regular languages. Try to design a DFA that
would decide each one (it is sufficient to draw the graph representation):

• L1 = {s ∈ {X,Y }∗| The length of s is 2}

• L2 = {s ∈ {a, b, c}∗| s contains the substring ‘ab’}

• L3 = {s ∈ {0, 1}∗| The number which is represented in binary as s is divisible by 3}

1.2 Nondeterministic Finite Automata

A similar model is a Nondeterministic Finite Automaton (NFA). Informally, an NFA is like
a DFA except that it can have multiple transitions out of a single state corresponding to
the same symbol, in which case it branches and follows both paths of computation. It can
also have no transitions corresponding to a state/symbol pair, in which case that branch
of computation is terminated. An NFA accepts an input if and only if at least one of its
branches of computation is in an accept state after the input string has been read.

Formally, an NFA N is defined as another 5-tuple, N = (Q,Σ, δ, q0, F ). Q,Σ, q0, and
F are defined as above. δ : Q × Σ → 2Q is the state transition function which maps a
state/symbol pair to a subset of Q (which could be empty). At any point, the set of all
states that some branch of computation is currently in is called the set of active states
[4].

N = (Q,Σ, δ, q0, F ) defines the function N : Σ∗ → {accept, reject}. N accepts a string

2



1.2 Nondeterministic Finite Automata 1 REGULAR LANGUAGES

s = s1s2 . . . sn ∈ Σ∗ if and only if there exists a sequence of states q0q1q2 . . . qn such that
qi ∈ δ(qi−1, si) for all 1 ≤ i ≤ n and qn ∈ F .

A quick motivating example for NFAs is the language L001 of binary strings ending in ‘001’.
This is a DFA that decides L001:

ε 0 00 001

1

start

0
0 1

1

1

0

0

Looking at this DFA, it is not immediately clear what it is doing. This NFA that decides
the same language is much more concise and comprehensible:

ε 0 00 001

0, 1

start
0 0 1

Here, there is a self-loop in the first state corresponding to both symbols in the alphabet,
so ε is always one of the active states. Every time a ‘0’ is encountered, a new branch of
computation begins and ‘0’ becomes one of the active states. If a symbol is encountered
that has no corresponding edge in the graph, that branch is terminated. This includes the
case that the substring ‘001’ appears before the end of the string; one branch will be in the
state ‘001’, at which point another character will follow which will terminate that branch
since there are no edges leaving ‘001’. So the only strings that will be accepted are those
that end in ‘001’.

A very important result in formal language theory is that while NFAs can often decide
languages much more concisely than DFAs, they are equivalent in computing power, in the
sense that any language which can be decided by a DFA can be decided by an NFA and
vice-versa. In other words, the set of languages which can be decided by NFAs is
the set of regular languages [4]. It is trivial to convert any DFA D into an equivalent
NFA N ; just change the transition function so that δN (q, s) = {δD(q, s)}. To find an
equivalent DFA D to an NFA N , QD = 2QN , i.e. there is a state in D corresponding to

3



1.3 Regular Expressions 1 REGULAR LANGUAGES

each subset of the states in N , and the transition function of D corresponds to the change
in active states in N given a symbol. q0,D = {q0,N} and FD = {q ∈ QD|q ∩ FN 6= ∅}, i.e.
the set of accepting states in D are those which contain at least one accepting state in N .

1.3 Regular Expressions

The most common application of NFAs in modern computer science is matching patterns
in a large body of text. Regular expressions are a form of notation for languages. Given
an alphabet Σ, the set of regular expressions can be defined recursively as follows [4] (where
LR refers to the language denoted by a regular expression R):

1. The empty set ∅, the set containing the empty string {ε}, and any set containing exactly
one character of Σ are all regular expressions which denote the obvious corresponding
language. The set {a} for a ∈ Σ or a = ε is usually simply abbreviated to a.

2. Given any two regular expressions R and S, R ∪ S is a regular expression denoting the
language of strings which are either in LR or LS .

3. Given any two regular expressions R and S, R ◦ S, usually abbreviated to RS, is a
regular expression denoting the language LRS = {r ◦ s|r ∈ LR, s ∈ LS}. The ◦ is
the concatenation operator. For any strings r = r1r2 . . . rn, s = s1s2 . . . sm, r ◦ s =
r1r2 . . . rns1s2 . . . sm.

4. Given a regular expression R, R∗ is a regular expression. This ∗ operation is the same as
defined above (called the Kleene star [13]). LR∗ is the smallest set of strings containing
all strings in LR that is closed under concatenation. A somewhat more useful definition
of the Kleene star will be given later in the context of semirings. Some simple examples
are {01}∗ = {ε, 01, 0101, . . .} and {0, 01}∗ = {ε, 0, 01, 00, 000, 001, 010, . . .}.

(0 ∪ 1)∗001 is a regular expression that denotes the language from the previous expression
of binary strings which end in ‘001’. Regular expressions for L1, L2, and L3 from section
1.1 are (X ∪ Y )(X ∪ Y ), (a ∪ b ∪ c)∗ab(a ∪ b ∪ c)∗, and (0 ∪ 1(01∗0)∗1)∗, respectively. The
latter is not at all obvious and deriving it requires use of Kleene’s algorithm to convert an
NFA to a regular expression, which I will not detail here. A more real-world example is the
language of email addresses, which can be built as follows (here a+ is used as shorthand

4



2 KLEENE ALGEBRAS

for aa∗, the language containing at least one a):

Rupper = A ∪B ∪ . . . ∪ Z
Rlower = a ∪ b ∪ . . . ∪ z

Rnumber = 0 ∪ 1 ∪ . . . ∪ 9

Ralphanumeric = Rupper ∪Rlower ∪Rnumber

RTLD = com ∪ net ∪ org ∪ edu ∪ gov
Remail = (Ralphanumeric)

+@(Ralphanumeric)
+.RTLD

As mentioned above, there is an algorithm called Kleene’s algorithm which will find an
equivalent regular expression to any NFA [9]. Another algorithm called Thompson’s con-
struction algorithm will find an equivalent NFA to any regular expression [15]. These two
algorithms together prove that the set of languages denoted by regular expressions
is the set of regular languages [13]. So we have that DFAs, NFAs, and regular expres-
sions are all equivalent in computing ability in the sense that all can decide the same set
of languages.

2 Kleene Algebras

2.1 Monoids

A monoid is much like a group except that it does not require group elements to have
inverses. Specifically, it is a set M endowed with an associative binary operation � :
M ×M → M with an identity element e [6]. A common monoid in computer science is
the string monoid, which consists of the set of finite-length strings over an alphabet with
the concatenation operator, where the empty string ε is the identity string [7].

2.2 Semirings

A semiring is much like a ring except that it doesn’t require additive inverses. Formally it
is a set K together with two operations + and · where 〈K,+〉 is a commutative monoid with
identity 0, 〈K, ·〉 is a monoid with identity 1, multiplication is left- and right-distributive,
and for any x ∈ K, 0 · x = x · 0 = 0 [14]. Note that in a normal ring with additive inverses
we have that 0 ·x = (x−x) ·x = x ·x−x ·x = 0. In a semiring this does not follow from the
first three axioms so it must be an axiom that multiplication by 0 annihilates all elements.

As promised, a more useful definition of the Kleene star can now be given [11]. Given an

5



2.3 Partially Ordered Sets and Idempotent Operators 2 KLEENE ALGEBRAS

element x of a semiring R,

x∗ =
∑
k≥0

k∏
i=1

x =
∑
k≥0

xk = 1 + x+ x2 + x3 + . . .

One interesting example of a semiring is the tropical semiring Tr = 〈R∪{∞},min,+,∞, 0〉.
Here ‘addition’ is the min operation and ‘multiplication’ is normal real-number addition
[16]. It is easy to see that both operations are associative and commutative. ∞ is the iden-
tity w.r.t. min because for any x ∈ Tr,min(x,∞) = x. Clearly 0 is the identity w.r.t. nor-
mal addition. Addition by∞ annihilates Tr because for any x ∈ Tr, x+∞ =∞+x =∞.
It is left to the reader to show that addition distributes over min.

2.3 Partially Ordered Sets and Idempotent Operators

A partial order on a set P is a relation ≤ that satisfies the following axioms for all a, b, c ∈ P
[12]

• a ≤ a (reflexivity)

• a ≤ b ∧ b ≤ a⇒ a = b (antisymmetry)

• a ≤ b ∧ b ≤ c⇒ a ≤ c (transitivity)

A set coupled with a partial ordering is called a partially ordered set or poset.

An element a of a set S with a binary operation + is called idempotent with respect
to + if a + a = a. If all elements of S are idempotent with respect to +, + is said to be
idempotent [3].

Any set P with an associative and commutative idempotent operator + implicitly gives a
partial ordering [3] ≤ defined by

a ≤ b⇔ a+ b = b

We can check that ≤ satisfies the partial ordering axioms:

• Reflexivity: Let a ∈ P . Since a+ a = a, a ≤ a.

• Antisymmetry: Let a, b ∈ P such that a ≤ b and b ≤ a. Then a+b = b and b+a = a.
+ is commutative, so a+ b = b+ a. Therefore a = b.

• Transitivity: Let a, b, c ∈ P such that a ≤ b and b ≤ c. Then a+ b = b and b+ c = c.
Since + is associative, (a+ b) + c = b+ c = c = a+ (b+ c) = a+ c. So a+ c = c and
therefore a ≤ c.

6



2.4 Kleene Algebras 2 KLEENE ALGEBRAS

2.4 Kleene Algebras

A Kleene algebra is a set K with two binary operations, + and ·, and a unary operation
*, which satisfy the following axioms for all a, x ∈ K [8]

(1) 〈K,+, ·〉 is a semiring with additive identity 0 and multiplicative identity 1.

(2) + is idempotent (Note: A semiring in which + is idempotent is called an idempotent
semiring).

(3) 1 + aa∗ ≤ a∗ (where ≤ is the partial ordering given by +)

(4) 1 + a∗a ≤ a∗

(5) ax ≤ x⇒ a∗x ≤ x

(6) xa ≤ x⇒ xa∗ ≤ x

It should come as no surprise that the set of regular expressions R is a Kleene algebra with
∪ as addition, ◦ (abbreviated as juxtaposition) as multiplication, the * operator, ∅ as 0 and
ε as 1 [8]. Note that with ∪ defining our partial ordering, A ≤ B ⇔ A ∪B = B ⇔ A ⊆ B,
so the partial ordering will be referred to as ⊆. We can verify the axioms:

(1) The semiring axioms are verified as follows:

• Set union is associative and commutative and ∅ is the identity with respect to
union.

• Language concatenation is easily seen to be associative (but not commutative).
To see that ε (shorthand for {ε}) is indeed the identity language w.r.t. ◦, let
R ∈ R. Rε = {r ◦ e : r ∈ R∧ e ∈ {ε}} = R since a string r concatenated with ε is
just r. Left identity is similarly proved.

• Let R,S, T ∈ R.

R(S ∪ T ) = {r ◦ a : r ∈ R ∧ a ∈ (S ∪ T )}
= {r ◦ s : r ∈ R ∧ a ∈ S} ∪ {r ◦ t : r ∈ R ∧ t ∈ T}
= RS ∪RT

The proof that (S ∪ T )R = SR ∪ TR is nearly identical.

• Let R ∈ R. R∅ = {r ◦ a : r ∈ R ∧ a ∈ ∅}. Since there is no such a, R∅ is empty
and therefore R∅ = ∅. Similarly, ∅R = ∅.

(2) For any set R, R ∪R = R, so ∪ is idempotent.

7



3 ALGEBRAIC PATH PROBLEMS

(3) Let R ∈ R. By the definition of the Kleene star, R ⊆ R∗ and R∗ is closed under
concatenation, so RR∗ ⊆ R∗. Additionally, also by the definition of the Kleene star,
the empty string is in R∗, so ε ⊆ R∗. Let a ∈ ε ∪RR∗. Then either a ∈ ε or a ∈ RR∗;
in both cases a ∈ R∗. Therefore, ε ∪RR∗ ⊆ R∗.

(4) The proof that ∀R ∈ R : ε ∪R∗R ⊆ R∗ is nearly identical to the previous proof.

(5) Let R,X ∈ R. Suppose RX ⊆ X. Then for all r ∈ R and x ∈ X, rx ∈ X. We want
to show that this implies that R∗X ⊆ X. Let r ∈ R∗ and x ∈ X. Since r ∈ R∗, r is
some sequence of elements of R; call these elements r1, r2, . . . rn so that r = r1r2 . . . rn.
Then rx = r1r2 . . . rn−1(rnx). Since rn ∈ R and x ∈ X, by assumption, rnx ∈ X. Call
xn = rnx. Then rx = r1r2 . . . rn−2(rn−1xn). Again by assumption, rn−1xn ∈ X. A
simple induction argument shows that rx ∈ X. Therefore, R∗X ⊆ X.

(6) Again, the proof of (6) is nearly identical to that of (5).

Many results can be derived from the axioms that give insights into the algebraic behavior
of regular expressions. The main interest among mathematicians in axiomatizing this
behavior is that having an algebra for regular languages gives a decision procedure for
determining if two regular expressions refer to the same language [8].

3 Algebraic Path Problems

3.1 Weighted Digraphs

A weighted digraph (I’ll use “graph” interchangeably) G = (V,W ) consists of a set of n
vertices V and an n×n adjacency matrix W with entries from some idempotent semiring
R. Wij refers to the weight on the edge from Vi to Vj . If there is no edge from Vi to Vj ,
Wij = 0R [2]. For example, we would represent the following graph, with weights from the
tropical semiring (note that min is idempotent in Tr), as such:

1

2

4

3

2

2

5

8

3

3

V 1 2 3 4

1 ∞ 2 3 ∞
2 ∞ ∞ 2 8
3 ∞ 3 ∞ 5
4 ∞ ∞ ∞ ∞

8



3.2 The Algebraic Path Problem 3 ALGEBRAIC PATH PROBLEMS

A path from i ∈ V to j ∈ V in a graph, denoted (i→ j), is a sequence of vertices from V
which starts with i and ends with j. The weight of a path from i to j, denoted w(i→ j),
is the product of the weights of all edges on the path [2]. More concretely, the weight of a
path v1v2 . . . vn is

∏n−1
i=1 Wi,i+1.

3.2 The Algebraic Path Problem

The algebraic path problem is the problem of computing the sum of the weights of all
paths from i to j, denoted d(i, j) [2].

d(i, j) =
∑

p ∈ all (i→ j)

w(p)

Consider the set Mn(R) of n × n matrices with entries from an idempotent semiring R.
Under the operations of normal matrix addition and matrix multiplication with the zero
matrix as the additive identity and the identity matrix as the multiplicative identity, Mn(R)
is itself an idempotent semiring (verifying this is fairly simple and is left to the reader). An
adjacency matrix W of a graph G = (V,W ) on n vertices, then, is an element of Mn(R).
When looking at successive powers of W , an interesting pattern emerges:

(W 2)ij =
∑
v∈V

Wiv ·Wvj

(W 3)ij =
∑

v1,v2∈V
Wi,n1 ·Wn1,n2 ·Wn2,j

...

(Wm)ij =
∑

v1,v2,...,vm−1∈V
Wi,n1 ·

(
m−1∏
k=2

Wnk−1,nk

)
·Wnm−1,j

=
∑

p ∈ all length-m paths (i→ j)

w(p)

In other words, (Wm)ij gives the sum of the weights of all length-m paths from i to j.
This means that the sum of the weights of all paths from i to j can be written as the sum
of the (i, j)th entry of every power of W . Therefore,

d(i, j) =
∑
m≥0

(Wm)ij =

∑
m≥0

Wm


ij

9



3.3 Shortest Path 3 ALGEBRAIC PATH PROBLEMS

This looks familiar; in fact, since W is a member of an idempotent semiring, we can apply
the Kleene star to it and yield the above expression. This gives the following solution to
the algebraic path problem [2]:

d(i, j) = (W ∗)ij

The reason it is so interesting that the solution to the algebraic path problem can be
expressed so succinctly is that this problem is a generalization of several different real
problems in computer science. By simply changing the underlying algebra, solutions to the
algebraic path problem become solutions to these other problems.

3.3 Shortest Path

The shortest path problem is to find, given a graph G = (V,W ) with real-valued costs on
the edges and s, t ∈ V , the path with the lowest cost.

Consider the graph from section 3.1 (repeated here for convenience).

1

2

4

3

2

2

5

8

3

3

V 1 2 3 4

1 ∞ 2 3 ∞
2 ∞ ∞ 2 8
3 ∞ 3 ∞ 5
4 ∞ ∞ ∞ ∞

Suppose the edges are one-way roads with differing amounts of traffic so that the weights
correspond to the number of minutes required to traverse each road. We are tasked with
finding the fastest time we could get from intersection 1 to intersection 4. Using the tropical
semiring as our algebra, we have that the solution to the algebraic path problem is

d(i, j) = (W ∗)ij

= min
m≥0

(Wm)ij

= min
all (i→ j) paths

∑
edge costs in path

Which is exactly an expression for the cost of the shortest path from i to j.

10



3.4 Maximum Likelihood in a Markov Chain 3 ALGEBRAIC PATH PROBLEMS

3.4 Maximum Likelihood in a Markov Chain

A Markov chain M = (V,W ) is a graph that models a stochastic process. Its vertices
are the set of possible states for the system at any point in time, and an edge from u ∈ V
to v ∈ V has a weight equal to the probability that the system will transition from state u
to state v in one time step [1]. This is an example of a Markov chain:

S

A

P

U

0.1 0.1

0.3
0.6

0.8 0.2

0.9 0.9
0.1

This is the stochastic process of my life. State S is “sleeping”. A is “awake in bed”. P is
“looking at my phone to see if it’s worth getting out of bed”. U is “up and at ’em”. All I
know is that I started out awake, and now I am asleep. I want to know the probability of
my most likely path to falling asleep (the maximum likelihood estimate of my path).
We can model this as an algebraic path problem. The Viterbi semiring is the semiring
V it = 〈[0, 1],max, ·, 0, 1〉. This is the corresponding adjacency matrix W with entries from
V it:

V S A P U

S 0.9 0.1 0 0
A 0.3 0 0.6 0.1
P 0.8 0 0 0.2
U 0 0.1 0 0.9

Using the Viterbi semiring as our algebra, we have the following solution to the algebraic
path problem:

d(i, j) = (W ∗)ij

= max
all (i→ j) paths

∏
transition probabilities in path

Which is exactly the probability of the most likely path from i to j.

11



3.5 Language Decided by an NFA 3 ALGEBRAIC PATH PROBLEMS

3.5 Language Decided by an NFA

To tie everything together, we come back to a problem from the first section: how can we
tell from an NFA which strings it will accept? Let’s look back at an earlier example:

ε 0 00 001

0, 1

start
0 0 1

This NFA has exactly one accept state, which makes it easy to model this problem as
an algebraic path problem; in general, though, any NFA can be converted to one with
only one accept state so that the following setup will work [4]. If we treat the symbols
on the transition arrows as elements of a Kleene algebra (which actually gives a more
general model of NFAs called GNFAs–“generalized NFAs”–that can have arbitrary regular
expressions on their edges) then we have the following adjacency matrix W :

N ε 0 00 001

ε 0 ∪ 1 0 ∅ ∅
0 ∅ ∅ 0 ∅
00 ∅ ∅ ∅ 1
001 ∅ ∅ ∅ ∅

Using a Kleene algebra as our underlying algebra, the solution to the algebraic path problem
is [5]

d(i, j) = (W ∗)ij

=
⋃

all (i→ j) paths

© the languages on the transitions of the path, in order

This is exactly a description of the set of strings accepted by the NFA.

12



REFERENCES REFERENCES

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena Scientific books.
Athena Scientific, 2002.

[2] Eugene Fink. A survey of sequential and systolic algorithms for the algebraic path
problem. Department of Computer Science, University of Waterloo, 1992. Technical
Report CS-92-37, 1992.

[3] “Encyclopedia of Mathematics”. Idempotent. [Online; accessed 8-May-2015].

[4] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 3rd edition, 2012.

[5] Robert Endre Tarjan. A unified approach to path problems. J. ACM, 28(3):577–593,
July 1981.

[6] Eric W. Weisstein. Monoid. From MathWorld—A Wolfram Web Resource. Last visited
on 8/5/2015.

[7] Wikibooks. Haskell/monoids — wikibooks, the free textbook project, 2014. [Online;
accessed 8-May-2015].

[8] Wikipedia. Kleene algebra — wikipedia, the free encyclopedia, 2014. [Online; accessed
8-May-2015].

[9] Wikipedia. Kleene’s algorithm — wikipedia, the free encyclopedia, 2014. [Online;
accessed 8-May-2015].

[10] Wikipedia. Kleene star — wikipedia, the free encyclopedia, 2015. [Online; accessed
8-May-2015].

[11] Wikipedia. Partially ordered set — wikipedia, the free encyclopedia, 2015. [Online;
accessed 8-May-2015].

[12] Wikipedia. Regular expression — wikipedia, the free encyclopedia, 2015. [Online;
accessed 8-May-2015].

[13] Wikipedia. Semiring — wikipedia, the free encyclopedia, 2015. [Online; accessed
8-May-2015].

[14] Wikipedia. Thompson’s construction algorithm — wikipedia, the free encyclopedia,
2015. [Online; accessed 8-May-2015].

[15] Wikipedia. Tropical geometry — wikipedia, the free encyclopedia, 2015. [Online;
accessed 8-May-2015].

13


