
 

 

  

File Operations 

Lab Manual 4 
      

Anupama KR & Meetha V Shenoy 
Birla Institute of Technology & Science, 

Pilani – KK Birla Goa Campus 



LAB 4 – DOS INTERRUPTS – FILE ACCESS 

4.1 Introduction to DOS Interrupts for Files 

All DOS files are sequential files. All sequential files are stored and accessed from the beginning of the 
file towards the end. File is usually accessed through DOS INT 21H function calls. In this session we will 
practice, how to create, read and write a file. There are two ways of handling a file. First via the file 
control block and second via the file handle. We will use file handle, as this is the most common and 
easier of the two methods. 

4.2 File Handle 

DOS File Handle Functions - a group of INT 21h functions that allows DOS to track open file data in its 
own internal tables. File Handle Functions also permit users to specify file path names. For the 
purposes of the following discussion, reading means copying all or part of an existing file into memory; 
writing a file means copying data from memory to a file; rewriting a file means replacing a file's content 
with other data. 

File Handle 

When a file is created or opened in a program, DOS assigns it a unique number called the file handle. 
This number is used to identify the file, so the program must save that information. (Note: a file 
stream in C/C++/Java is the same thing as a file handle in Assembler.) 

There are 5 predefined file handles: 

0     keyboard 

1     screen 

2     error output - usually the screen 

3     COM1 

4     printer 

Additional user-defined files are assigned file handles starting with 5, 6, 7, etc  - which are assigned 
to your files. 

File Errors 

There can be many types of errors in using INT 21h file handling functions. Each error type is identified 
by a code number. In the following functions, if an error occurs the CF is set and the code number is 
stored in AX. 

A list of common file-handling errors: 

Error Code:        Meaning: 

    1              invalid function number 

    2              file not found 

    3              path not found 

    4              all available handles in use 

    5              access denied (file may already be open by another process) 

    6              invalid file handle 

    C              invalid access code 

    F              invalid drive specified 



   10              attempt to remove current directory 

   11              not the same device 

   12              no more files to be found 

 

THE FILE POINTER 

The file pointer is used to locate a position in a file. 

When the file is opened, the file pointer is positioned at the beginning of the file. 

After a read operation, the file pointer indicates the next byte to be read; after writing a new file, 
the file pointer is at EOF. 

 

4.3 File Interrupts 

Purpose: Create a File – Function 3CH – Create a File 

Input:  

    AH = 3Ch  

     DS:DX = address of filename (an ASCIIZ string ending with a zero byte)  

e.g of ASCIIZ – ‘C:\MASM611\BIN\abc.txt’,0 

     CL = attribute 

Attribute – Bit map 

Bits 7 6 5 4 3 2 1 0 

Description shareable - archive directory vol. label system hidden read-only 

Output: 

If successful CF =0 , AX = file handle  

    Error: if CF = 1, AX = error code (3, 4, or 5) 

Possible errors: 

1. path doesn't exist 
2. all file handles in use 
3. access denied --- directory is full or file is read-only 

Example: Program Segment open a new read-only file called "FILE1" 

FNAME      DB   'FILE1', 0 

HANDLE     DW  ?  

.CODE 

      MOV  AH, 3CH            ; open file function 

      LEA  DX, FNAME          ; copy address to DX 

     MOV  CL, 1              ; read-only attribute 

     INT  21H                ; open the file 

  MOV  HANDLE, AX       ; handle or err code 



Purpose:  Opening a existing File – Function 3DH 

Input: 

 AH = 3DH 

AL = access and sharing modes 

0 = open for reading 

         1 = open for writing 

         2 = open for read/write 

DS:DX =  ASCIZ filename 

Output: 

CF clear if successful, AX = file handle 

CF set on error AX = error code (01h,02h,03h,04h,05h,0Ch,56h) 

 

Purpose:  Writing to a File – Function 40H 

Input: 

AH = 40h 

    BX = file handle 

    CX = number of bytes to write 

     DS:DX = data address 

Output: 

     AX = count of bytes written. 

     If AX < CX, error (disk full). 

    If CF = 1, AX = error code (5, 6) 

If CX is zero, no data is written, and the file is truncated or extended to the current position 

Data is written beginning at the current file position, and the file position is updated after a successful 
write 

The usual cause for AX < CX on return is a full disk 

 

Purpose:  Closing a File – Function 3EH 

A file should be closed after it has been processed. This frees the file handle for use with another 
file. If the file is being written, closing the file causes any data remaining in memory to be written to 
the file, and the file's time, date, and size will be updated in the directory entry. 

Input: 

AH = 3Eh 

    BX = file handle 

Output: 

     Error if CF = 1, AX = error code (6) 

 

 

 



Purpose:  Reading File – Function 3FH 

Input: 

AH = 3Fh  

     BX = file handle 

     CX = number of bytes to read 

     DS:DX = memory buffer address 

Output: 

     AX = count of bytes actually read. 

     If AX = 0 or AX < CX, EOF 

     If CF = 1, AX = error code (5, 6) 

 

Purpose: Moving File Pointer 42H 

 Input:  

    AH = 42h  

     AL = movement code: 

          0 = relative to beginning of file 

          1 = relative to current file position  

          2 = move relative to end of file 

     BX = file handle 

     CX: DX = number bytes to move (signed) 

Output:  

     DX:AX = new location in bytes from the beginning of the file      

     If CF = 1, AX = error code (1, 6) 

Note: 

CX:DX holds the number of bytes to move the pointer 

< 0 => move pointer backward 

> 0 => move pointer forward 

If CX: DX is too large, the pointer could be moved past the beginning or end of the file. This is not an 
error, but will cause an error when the next read or write is executed. 

If AL = 0 => move pointer from beginning of file (forward) 

If AL = 1 => move pointer from current position (forward or backward) 

If AL = 2 => move pointer from end of file (backward 

 

 

 

 



Purpose: Deleting a File 41H 

Input   

AH = 41H 

DS: DX = address of the ASCII-Z string file name 

Output 

 AX = error code if carry is set 

 

Purpose: Renaming a File 56H 

Input  

 AH = 56H 

DS:DX = ASCIZ filename of existing file  

ES:DI = ASCIZ new filename  

CL = attribute mask  

Output 

CF clear if successful 

CF set on error, AX= error code (02h,03h,05h,11h)  

Few More Interesting File Functions 

GET/ SET FILE'S LAST-WRITTEN DATE AND TIME  

Input 

 AH = 57H with AL =01h (Set) AL = 00 (Get) 

BX = file handle 

Input/ Output 

CX = time & DX = date 

Time 15-11 10-5 4-0 Day 15-9 8-5 4-0 

Format Hrs Minutes Seconds Format Year Month Day 

 

Output 

CF clear if successful 

CF set on error AX = error code (01h,06h) 

 

GET/ SET FILE'S ATTRIBUTE 

Input 

 AH = 43H 

AL =01h (Set) AL = 00 (Get) 

DS:DX – ASCIIZ file name 

Input/ Output 

CX = Attribute 

Output 

CF clear if successful 

CF set on error AX = error code (01h,06h) 



Tasks 

1. Create a new file of any name and in that file write your name and ID. No. twice on two different 

lines. Hint: make use of carriage return and line feed ASCII codes. Be sure to close the file. 

2. To the file resulting from Task1, append your hostel name and room number. Close the file in the 

end. 

3. Open the file you created in Task 2 and read its contents. You can count the number of bytes to 

be read beforehand. After reading the file, display the data using dos function call 09h. Close the 

file in the end. 

4.  Open the file you created in Task 2. Read the entire file one byte at a time and stop after you 

reach the end of file. After reading the file, display the data using dos function call 09h. Close the 

file in the end. 

5. Create a new file and write your name and ID. No. in it. Use keyboard to input the data. Hint: Use 

dos function 0Ah for input from keyboard. Also try renaming the file and deleting it, changing its 

attributes date of creation & time. 

  

 


